216
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Spotlight on Trans-Synaptic Degeneration in the Visual Pathway in Multiple Sclerosis

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 153-160 | Received 08 Jun 2023, Accepted 15 Nov 2023, Published online: 28 Dec 2023

References

  • Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. 2018;378:169–180. doi:10.1056/NEJMra1401483
  • Costello F. The afferent visual pathway: designing a structural-functional paradigm of multiple sclerosis. ISRN Neurol. 2013;2013:134858. doi:10.1155/2013/134858
  • You Y, Gupta VK, Graham SL, et al. Anterograde degeneration along the visual pathway after optic nerve injury. PLoS One. 2012;7:e52061. doi:10.1371/journal.pone.0052061
  • Kanamori A, Catrinescu M, Belisle JM, et al. Retrograde and Wallerian axonal degeneration occur synchronously after retinal ganglion cell axotomy. Am J Pathol. 2012;181:62–73. doi:10.1016/j.ajpath.2012.03.030
  • Olwen CM, Peter AC, Shiv S. Illustrations of the afferent visual pathway and concepts surrounding trans-synaptic neuroaxonal degeneration in the visual pathway in multiple sclerosis. Available from: https://collections.lib.utah.edu/ark:/87278/s6ty03rf. Accessed November 15, 2023.
  • Petzold A, Balcer L, Balcer LJ, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology. 2017;16:797–812. doi:10.1016/S1474-4422(17)30278-8
  • Granziera C, Wuerfel J, Barkhof F, et al. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain. 2021;144:1296–1311. doi:10.1093/brain/awab029
  • Green AJ, McQuaid S, Hauser SL, et al. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133:1591–1601. doi:10.1093/brain/awq080
  • Syc SB, Saidha S, Newsome SD, et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain. 2012;135:521–533. doi:10.1093/brain/awr264
  • Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E, et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol. 2014;75(1):98–107. doi:10.1002/ana.24030
  • Balk LJ, Twisk JWR, Steenwijk MD, et al. A dam for retrograde axonal degeneration in multiple sclerosis? J Neurol Neurosurg Psychiatry. 2014;85:782–789. doi:10.1136/jnnp-2013-306902
  • Murphy OC, Sotirchos ES, Kalaitzidis G, et al. Trans-synaptic degeneration following acute optic neuritis in multiple sclerosis. Ann Neurol. 2023;93:76–87. doi:10.1002/ana.26529
  • Pawlitzki M, Horbrügger M, Loewe K, et al. MS optic neuritis-induced long-term structural changes within the visual pathway. Neurol Neuroimmunol Neuroinflamm. 2020;7:e665. doi:10.1212/NXI.0000000000000665
  • Klawiter EC, Schmidt RE, Trinkaus K, et al. Radial diffusivity predicts demyelination in ex-vivo multiple sclerosis spinal cords. Neuroimage. 2011;55(4):1454–1460. doi:10.1016/j.neuroimage.2011.01.007
  • Balk LJ, Steenwijk MD, Tewarie P, et al. Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86:419–424. doi:10.1136/jnnp-2014-308189
  • Rocca MA, Mesaros S, Preziosa P, et al. Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. Mult Scler. 2013;19:1610–1617. doi:10.1177/1352458513485146
  • Kolbe SC, van der Walt A, Butzkueven H, et al. Serial diffusion tensor imaging of the optic radiations after acute optic neuritis. J Ophthalmol. 2016;2016:2764538. doi:10.1155/2016/2764538
  • Kolbe S, Bajraszewski C, Chapman C, et al. Diffusion tensor imaging of the optic radiations after optic neuritis. Hum Brain Mapp. 2012;33:2047–2061. doi:10.1002/hbm.21343
  • Tur C, Goodkin O, Altmann DR, et al. Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis. Brain. 2016;139:816–828. doi:10.1093/brain/awv396
  • You Y, Joseph C, Wang C, et al. Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease. Brain. 2019;142:426–442. doi:10.1093/brain/awy338
  • Ilardi M, Nolan-Kenney R, Fatterpekar G, et al. Role for OCT in detecting hemi-macular ganglion cell layer thinning in patients with multiple sclerosis and related demyelinating diseases. J Neurol Sci. 2020;419:117159. doi:10.1016/j.jns.2020.117159
  • Al-Louzi O, Button J, Newsome SD, et al. Retrograde trans-synaptic visual pathway degeneration in multiple sclerosis: a case series. Mult Scler. 2017;23:1035–1039. doi:10.1177/1352458516679035
  • Mitchell JR, Oliveira C, Tsiouris AJ, et al. Corresponding Ganglion cell atrophy in patients with postgeniculate homonymous visual field loss. J Neuroophthalmol. 2015;35:353–359. doi:10.1097/WNO.0000000000000268
  • Reich DS, Smith SA, Gordon-Lipkin EM, et al. Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. Arch Neurol. 2009;66:998–1006. doi:10.1001/archneurol.2009.107
  • Sinnecker T, Oberwahrenbrock T, Metz I, et al. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning--an ultrahigh-field MR pilot study. Eur Radiol. 2015;25:122–131. doi:10.1007/s00330-014-3358-8
  • Klistorner A, Sriram P, Vootakuru N, et al. Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology. 2014;82:2165–2172.
  • Klistorner A, Graham EC, Yiannikas C, et al. Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations. Eur J Neurol. 2017;24:1392–1398. doi:10.1111/ene.13404
  • Al-Louzi OA, Bhargava P, Newsome SD, et al. Outer retinal changes following acute optic neuritis. Mult Scler. 2016;22:362–372. doi:10.1177/1352458515590646
  • Papadopoulou A, Gaetano L, Pfister A, et al. Damage of the lateral geniculate nucleus in MS: assessing the missing node of the visual pathway. Neurology. 2019;92:e2240–e2249. doi:10.1212/WNL.0000000000007450
  • Gharagozloo M, Smith MD, Jin J, et al. Complement component 3 from astrocytes mediates retinal ganglion cell loss during neuroinflammation. Acta Neuropathol. 2021;142:899–915. doi:10.1007/s00401-021-02366-4
  • Werneburg S, Jung J, Kunjamma RB, et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity. 2020;52:167–182.e7. doi:10.1016/j.immuni.2019.12.004
  • Hammond TR, Marsh SE, Stevens B. Immune signaling in neurodegeneration. Immunity. 2019;50:955–974. doi:10.1016/j.immuni.2019.03.016
  • Fitzgerald KC, Kim K, Smith MD, et al. Early complement genes are associated with visual system degeneration in multiple sclerosis. Brain. 2019;142:2722–2736. doi:10.1093/brain/awz188
  • Bermel RA, Villoslada P. Retrograde trans-synaptic degeneration in MS: a missing link? Neurology. 2014;82:2152–2153. doi:10.1212/WNL.0000000000000532