435
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

An Evaluation on the Role of Non-Coding RNA in HIV Transcription and Latency: A Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 115-134 | Received 21 Dec 2022, Accepted 24 Feb 2023, Published online: 14 Mar 2023

References

  • Tyagi M, Bukrinsky M. Human immunodeficiency virus (HIV) latency: the major hurdle in HIV eradication. Mol Med. 2012;18(7):1096–1108. doi:10.2119/molmed.2012.00194
  • Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. 2012;37(3):377–388. doi:10.1016/j.immuni.2012.08.010
  • Chun T-W, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387(6629):183–188. doi:10.1038/387183a0
  • Pasternak AO, Berkhout B. What do we measure when we measure cell-associated HIV RNA. Retrovirology. 2018;15(1):13. doi:10.1186/s12977-018-0397-2
  • Chitrakar A, Sanz M, Maggirwar SB, Soriano-Sarabia N. HIV latency in myeloid cells: challenges for a cure. Pathogens. 2022;11(6):611. doi:10.3390/pathogens11060611
  • King VM, Borchert GM. MicroRNA expression: protein participants in microRNA regulation. In: Huang J, Borchert GM, Dou D, editors. Bioinformatics in MicroRNA Research. New York: Springer New York; 2017:27–37.
  • Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–840. doi:10.1038/nature09267
  • Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12(2):99–110. doi:10.1038/nrg2936
  • Huang V, Place RF, Portnoy V, et al. Upregulation of cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res. 2012;40(4):1695–1707. doi:10.1093/nar/gkr934
  • Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A. 2008;105(5):1608–1613. doi:10.1073/pnas.0707594105
  • Younger ST, Corey DR. Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 2011;39(13):5682–5691. doi:10.1093/nar/gkr155
  • Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–914. doi:10.1016/j.molcel.2011.08.018
  • Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol. 2010;7(5):582–585. doi:10.4161/rna.7.5.13216
  • Hashemi P, Sadowski I. Diversity of small molecule HIV-1 latency reversing agents identified in low- and high-throughput small molecule screens. Med Res Rev. 2020;40(3):881–908. doi:10.1002/med.21638
  • Rasmussen TA, Lewin SR. Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? Curr Opin HIV AIDS. 2016;11(4):394–401. doi:10.1097/COH.0000000000000279
  • Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487(7408):482–485. doi:10.1038/nature11286
  • Elliott JH, Wightman F, Solomon A, et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 2014;10(11):e1004473. doi:10.1371/journal.ppat.1004473
  • Rasmussen TA, Tolstrup M, Brinkmann CR, et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a Phase 1/2, single group, clinical trial. Lancet HIV. 2014;1(1):e13–e21. doi:10.1016/S2352-3018(14)70014-1
  • Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-and-lock strategies to cure HIV infection. Viruses. 2020;12(1):84. doi:10.3390/v12010084
  • Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST. The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. mBio. 2015;6(4):e00465–e00465. doi:10.1128/mBio.00465-15
  • Lu Y, Bohn-Wippert K, Pazerunas PJ, Moy JM, Singh H, Dar RD. Screening for gene expression fluctuations reveals latency-promoting agents of HIV. Proc Nat Acad Sci U S A. 2021;118(11):e2012191118. doi:10.1073/pnas.2012191118
  • Kyei GB, Meng S, Ramani R, et al. Splicing factor 3B subunit 1 interacts with HIV Tat and plays a role in viral transcription and reactivation from latency. mBio. 2018;9(6). doi:10.1128/mBio.01423-18
  • Mukim A, Smith DM, Deshmukh S, Qazi AA, Beliakova-Bethell N. A camptothetin analog, topotecan, promotes HIV latency via interference with HIV transcription and RNA splicing. J Virol. 2023;31:e0163022. doi:10.1128/jvi.01630-22
  • Maina EK, Adan AA, Mureithi H, Muriuki J, Lwembe RM. A review of current strategies towards the elimination of latent HIV-1 and subsequent HIV-1 cure. Curr HIV Res. 2020;19(1):14–26.
  • Qu X, Wang P, Ding D, et al. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res. 2013;41(16):7771–7782. doi:10.1093/nar/gkt571
  • Ebina H, Kanemura Y, Misawa N, et al. A high excision potential of TALENs for integrated DNA of HIV-based lentiviral vector. PLoS One. 2015;10(3):e0120047. doi:10.1371/journal.pone.0120047
  • Karpinski J, Chemnitz J, Hauber I, et al. Universal Tre (uTre) recombinase specifically targets the majority of HIV-1 isolates. J Int AIDS Soc. 2014;17(4 Suppl 3):19706. doi:10.7448/IAS.17.4.19706
  • Kaminski R, Chen Y, Fischer T, et al. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep. 2016;6(1):22555. doi:10.1038/srep22555
  • Panfil AR, London JA, Green PL, Yoder KE. CRISPR/Cas9 genome editing to disable the latent HIV-1 provirus. Front Microbiol. 2018;9:3107. doi:10.3389/fmicb.2018.03107
  • Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–1789. doi:10.1101/gr.132159.111
  • Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–1927. doi:10.1101/gad.17446611
  • Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genom. 2007;8(1):166. doi:10.1186/1471-2164-8-166
  • Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 2019;9(1):5–23. doi:10.2217/nmt-2018-0033
  • Ruelas DS, Chan JK, Oh E, et al. MicroRNA-155 reinforces HIV latency. J Biol Chem. 2015;290(22):13736–13748. doi:10.1074/jbc.M115.641837
  • Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature. 1987;326(6114):711–713. doi:10.1038/326711a0
  • Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci U S A. 1989;86:2336–2340. doi:10.1073/pnas.86.7.2336
  • Modai S, Farberov L, Herzig E, Isakov O, Hizi A, Shomron N. HIV-1 infection increases microRNAs that inhibit Dicer1, HRB and HIV-EP2, thereby reducing viral replication. PLoS One. 2019;14(1):e0211111. doi:10.1371/journal.pone.0211111
  • Nomura N, Zhao MJ, Nagase T, et al. HIV-EP2, a new member of the gene family encoding the human immunodeficiency virus type 1 enhancer-binding protein. Comparison with HIV-EP1/PRDII-BF1/MBP-1. J Biol Chem. 1991;266(13):8590–8594. doi:10.1016/S0021-9258(18)93015-2
  • Chiang K, Sung T-L, Rice AP. Regulation of cyclin T1 and HIV-1 replication by microRNAs in resting CD4(+) T lymphocytes. J Virol. 2012;86(6):3244–3252. doi:10.1128/JVI.05065-11
  • Sung TL, Rice AP. miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog. 2009;5(1):e1000263. doi:10.1371/journal.ppat.1000263
  • Triboulet R, Mari B, Lin Y-L, et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science. 2007;315(5818):1579–1582. doi:10.1126/science.1136319
  • Seddiki N, Phetsouphanh C, Swaminathan S, et al. The microRNA-9/B-lymphocyte-induced maturation protein-1/IL-2 axis is differentially regulated in progressive HIV infection. Eur J Immunol. 2013;43(2):510–520. doi:10.1002/eji.201242695
  • Kaczmarek Michaels K, Natarajan M, Euler Z, Alter G, Viglianti G, Henderson AJ. Blimp-1, an intrinsic factor that represses HIV-1 proviral transcription in memory CD4+ T cells. J Immunol. 2015;194(7):3267–3274. doi:10.4049/jimmunol.1402581
  • Yu J, Angelin-Duclos C, Greenwood J, Liao J, Calame K. Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol Cell Biol. 2000;20(7):2592–2603. doi:10.1128/MCB.20.7.2592-2603.2000
  • Thiele S, Wittmann J, Jäck H-M, Pahl A. miR-9 enhances IL-2 production in activated human CD4+ T cells by repressing Blimp-1. Eur J Immunol. 2012;42(8):2100–2108. doi:10.1002/eji.201142203
  • Chinnapaiyan S, Dutta RK, Nair M, Chand HS, Rahman I, Unwalla HJ. TGF-β1 increases viral burden and promotes HIV-1 latency in primary differentiated human bronchial epithelial cells. Sci Rep. 2019;9(1):12552. doi:10.1038/s41598-019-49056-6
  • Ayala-Suárez R, Díez-Fuertes F, Calonge E, et al. Insight in miRNome of long-term non-progressors and elite controllers exposes potential RNAi role in restraining HIV-1 infection. J Clin Med. 2020;9(8). doi:10.3390/jcm9082452
  • Amaral AJ, Andrade J, Foxall RB, et al. miRNA profiling of human naive CD4 T cells links miR‐34c‐5p to cell activation and HIV replication. EMBO J. 2017;36(3):346–360. doi:10.15252/embj.201694335
  • Teng Y, Luo M, Yu T, et al. CRISPR/Cas9-mediated deletion of miR-146a enhances antiviral response in HIV-1 infected cells. Genes Immun. 2019;20(4):327–337. doi:10.1038/s41435-018-0036-x
  • Okoye I, Xu L, Oyegbami O, et al. Plasma extracellular vesicles enhance HIV-1 infection of activated CD4(+) T cells and promote the activation of latently infected J-Lat10.6 cells via miR-139-5p transfer. Front Immunol. 2021;12:697604. doi:10.3389/fimmu.2021.697604
  • Jordan A, Bisgrove D, Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 2003;22(8):1868–1877. doi:10.1093/emboj/cdg188
  • Roux A, Leroy H, De Muylder B, et al. FOXO1 transcription factor plays a key role in T cell-HIV-1 interaction. PLoS Pathog. 2019;15(5):e1007669. doi:10.1371/journal.ppat.1007669
  • Patel P, Ansari MY, Bapat S, Thakar M, Gangakhedkar R, Jameel S. The microRNA miR-29a is associated with human immunodeficiency virus latency. Retrovirology. 2014;11:108. doi:10.1186/s12977-014-0108-6
  • Ahluwalia JK, Khan SZ, Soni K, et al. Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology. 2008;5:117. doi:10.1186/1742-4690-5-117
  • Nathans R, Chu C-Y, Serquina AK, Lu -C-C, Cao H, Rana TM. Cellular microRNA and P-bodies modulate host-HIV-1 interactions. Mol Cell. 2009;34(6):696–709. doi:10.1016/j.molcel.2009.06.003
  • Luo Y, Na Z, Slavoff SA. P-bodies: composition, properties, and functions. Biochemistry. 2018;57(17):2424–2431. doi:10.1021/acs.biochem.7b01162
  • Huang J, Wang F, Argyris E, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med. 2007;13:1241–1247. doi:10.1038/nm1639
  • López-Huertas MR, Morín M, Madrid-Elena N, et al. Selective miRNA modulation fails to activate HIV replication in in vitro latency models. Mol Ther Nucleic Acids. 2019;17:323–336. doi:10.1016/j.omtn.2019.06.006
  • Woldemeskel BA, Kwaa AK, Blankson JN. Viral reservoirs in elite controllers of HIV-1 infection: implications for HIV cure strategies. EBioMedicine. 2020;62:103118. doi:10.1016/j.ebiom.2020.103118
  • Trypsteen W, White CH, Mukim A, et al. Long non-coding RNAs and latent HIV – a search for novel targets for latency reversal. PLoS One. 2019;14(11):e0224879. doi:10.1371/journal.pone.0224879
  • Matsuda S, Akagawa K, Honda M, Yokota Y, Takebe Y, Takemori T. Suppression of HIV replication in human monocyte-derived macrophages induced by granulocyte/macrophage colony-stimulating factor. AIDS Res Hum Retroviruses. 1995;11(9):1031–1038. doi:10.1089/aid.1995.11.1031
  • Vemula SV, Maxwell JW, Nefedov A, et al. Identification of proximal biomarkers of PKC agonism and evaluation of their role in HIV reactivation. Antiviral Res. 2017;139:161–170. doi:10.1016/j.antiviral.2016.11.014
  • Yamada K, Lim J, Dale JM, et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 2003;302(5646):842–846. doi:10.1126/science.1088305
  • Li H, Chi X, Li R, Ouyang J, Chen Y. A novel lncRNA, AK130181, contributes to HIV-1 latency by regulating viral promoter-driven gene expression in primary CD4(+) T cells. Mol Ther Nucleic Acids. 2020;20:754–763. doi:10.1016/j.omtn.2020.04.011
  • Liu B, Sun L, Liu Q, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27(3):370–381. doi:10.1016/j.ccell.2015.02.004
  • Wang H, Liu Y, Huan C, et al. NF-κB-interacting long noncoding RNA regulates HIV-1 replication and latency by repressing NF-κB signaling. J Virol. 2020;94(17). doi:10.1128/JVI.01057-20
  • Guan Y, Kuo WL, Stilwell JL, et al. Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin Cancer Res. 2007;13(19):5745–5755. doi:10.1158/1078-0432.CCR-06-2882
  • Carramusa L, Contino F, Ferro A, et al. The PVT-1 oncogene is a Myc protein target that is overexpressed in transformed cells. J Cell Physiol. 2007;213(2):511–518. doi:10.1002/jcp.21133
  • Guo J, Hao C, Wang C, Li L. Long noncoding RNA PVT1 modulates hepatocellular carcinoma cell proliferation and apoptosis by recruiting EZH2. Cancer Cell Int. 2018;18:98. doi:10.1186/s12935-018-0582-3
  • Tripathy MK, McManamy MEM, Burch BD, Archin NM, Margolis DM. H3K27 demethylation at the proviral promoter sensitizes latent HIV to the effects of vorinostat in ex-vivo cultures of resting CD4+ T cells. J Virol. 2015;89:8392–8405. doi:10.1128/JVI.00572-15
  • Qu D, Sun -W-W, Li L, et al. Long noncoding RNA MALAT1 releases epigenetic silencing of HIV-1 replication by displacing the polycomb repressive complex 2 from binding to the LTR promoter. Nucleic Acids Res. 2019;47(6):3013–3027. doi:10.1093/nar/gkz117
  • Chao T-C, Zhang Q, Li Z, et al. The long noncoding RNA HEAL regulates HIV-1 replication through epigenetic regulation of the HIV-1 promoter. mBio. 2019;10(5):e02016–02019. doi:10.1128/mBio.02016-19
  • Huan C, Li Z, Ning S, Wang H, Yu X-F, Zhang W. Long noncoding RNA uc002yug.2 activates HIV-1 latency through regulation of mRNA levels of various RUNX1 isoforms and increased Tat expression. J Virol. 2018;92(9). doi:10.1128/JVI.01844-17
  • Zhang Q, Chen C-Y, Yedavalli VS, Jeang K-T. NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. mBio. 2013;4(1):e00596–00512. doi:10.1128/mBio.00596-12
  • Bond CS, Fox AH. Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol. 2009;186(5):637–644. doi:10.1083/jcb.200906113
  • Zolotukhin AS, Michalowski D, Bear J, et al. PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol. 2003;23(18):6618–6630. doi:10.1128/MCB.23.18.6618-6630.2003
  • Schwartz S, Felber BK, Pavlakis GN. Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of rev protein. J Virol. 1992;66(1):150–159. doi:10.1128/jvi.66.1.150-159.1992
  • Liu H, Hu P-W, Couturier J, Lewis DE, Rice AP. HIV-1 replication in CD4+ T cells exploits the down-regulation of antiviral NEAT1 long non-coding RNAs following T cell activation. Virology. 2018;522:193–198. doi:10.1016/j.virol.2018.07.020
  • Imam H, Shahr Bano A, Patel P, Holla P, Jameel S. The lncRNA NRON modulates HIV-1 replication in a NFAT-dependent manner and is differentially regulated by early and late viral proteins. Sci Rep. 2015;5(1):8639. doi:10.1038/srep08639
  • Li J, Chen C, Ma X, et al. Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing Tat protein degradation. Nat Commun. 2016;7(1):11730. doi:10.1038/ncomms11730
  • Schynkel T, Szaniawski MA, Spivak AM, et al. Interferon-mediated long non-coding RNA response in macrophages in the context of HIV. Int J Mol Sci. 2020;21(20):7741. doi:10.3390/ijms21207741
  • Kambara H, Niazi F, Kostadinova L, et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res. 2014;42(16):10668–10680. doi:10.1093/nar/gku713
  • Chen Q, Cai J, Wang Q, et al. Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/β-catenin pathway by scaffolding EZH2. Clin Cancer Res. 2018;24(3):684–695. doi:10.1158/1078-0432.CCR-17-0605
  • Wang Q, Liu L, Zhang S, et al. Long noncoding RNA NEAT1 suppresses hepatocyte proliferation in fulminant hepatic failure through increased recruitment of EZH2 to the LATS2 promoter region and promotion of H3K27me3 methylation. Exp Mol Med. 2020;52(3):461–472. doi:10.1038/s12276-020-0387-z
  • Zhou Q, Chen J, Feng J, Wang J. Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid-stimulating hormone receptor (TSHR). Tumor Biol. 2016;37(3):3105–3113. doi:10.1007/s13277-015-4149-9
  • Chen L, Chen L, Zuo L, et al. Short communication: long noncoding RNA GAS5 inhibits HIV-1 replication through interaction with miR-873. AIDS Res Hum Retroviruses. 2018;34(6):544–549. doi:10.1089/aid.2017.0177
  • Chang Z, Cui J, Song Y. Long noncoding RNA PVT1 promotes EMT via mediating microRNA-186 targeting of Twist1 in prostate cancer. Gene. 2018;654:36–42. doi:10.1016/j.gene.2018.02.036
  • Lan T, Yan X, Li Z, et al. Long non-coding RNA PVT1 serves as a competing endogenous RNA for miR-186-5p to promote the tumorigenesis and metastasis of hepatocellular carcinoma. Tumour Biol. 2017;39(6):1010428317705338. doi:10.1177/1010428317705338
  • Huang T, Liu HW, Chen JQ, et al. The long noncoding RNA PVT1 functions as a competing endogenous RNA by sponging miR-186 in gastric cancer. Biomed Pharmacother. 2017;88:302–308. doi:10.1016/j.biopha.2017.01.049
  • Lu X, Yu Y, Yin F, et al. Knockdown of PVT1 inhibits IL-1β-induced injury in chondrocytes by regulating miR-27b-3p/TRAF3 axis. Int Immunopharmacol. 2020;79:106052. doi:10.1016/j.intimp.2019.106052
  • Wang Z, Zhang Q, Sun Y, Shao F. Long non-coding RNA PVT1 regulates BAMBI to promote tumor progression in non-small cell lung cancer by sponging miR-17-5p. Onco Targets Ther. 2020;13:131–142. doi:10.2147/OTT.S217335
  • Yuan W, Xiong X, Du J, Fan Q, Wang R, Zhang X. LncRNA PVT1 accelerates LPS-induced septic acute kidney injury through targeting miR-17-5p and regulating NF-κB pathway. Int Urol Nephrol. 2021;53(11):2409–2419. doi:10.1007/s11255-021-02905-8
  • Huang F, Chen W, Peng J, et al. Retracted article: lncRNA PVT1 triggers Cyto-protective autophagy and promotes pancreatic ductal adenocarcinoma development via the miR-20a-5p/ULK1 axis. Mol Cancer. 2018;17(1):98. doi:10.1186/s12943-018-0845-6
  • Li X, Zhang Z, Jiang H, et al. Circular RNA circPVT1 promotes proliferation and invasion through sponging miR-125b and activating E2F2 signaling in non-small cell lung cancer. Cell Physiol Biochem. 2018;51(5):2324–2340. doi:10.1159/000495876
  • Jadlowsky JK, Wong JY, Graham AC, et al. Negative elongation factor is required for the maintenance of proviral latency but does not induce promoter-proximal pausing of RNA polymerase II on the HIV long terminal repeat. Mol Cell Biol. 2014;34(11):1911–1928. doi:10.1128/MCB.01013-13
  • Lin X, Irwin D, Kanazawa S, et al. Transcriptional profiles of latent human immunodeficiency virus in infected individuals: effects of Tat on the host and reservoir. J Virol. 2003;77(15):8227–8236. doi:10.1128/JVI.77.15.8227-8236.2003
  • Adams M, Sharmeen L, Kimpton J, et al. Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc Nat Acad Sci U S A. 1994;91:3862–3866. doi:10.1073/pnas.91.9.3862
  • Barclay RA, Schwab A, DeMarino C, et al. Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem. 2017;292(28):11682–11701. doi:10.1074/jbc.M117.793521
  • Pinto DO, Scott TA, DeMarino C, et al. Effect of transcription inhibition and generation of suppressive viral non-coding RNAs. Retrovirology. 2019;16(1):13. doi:10.1186/s12977-019-0475-0
  • Schopman NC, Willemsen M, Liu YP, et al. Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res. 2012;40(1):414–427. doi:10.1093/nar/gkr719
  • Klase Z, Kale P, Winograd R, et al. HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol. 2007;8:63. doi:10.1186/1471-2199-8-63
  • Ouellet DL, Plante I, Landry P, et al. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res. 2008;36(7):2353–2365. doi:10.1093/nar/gkn076
  • Klase Z, Winograd R, Davis J, et al. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology. 2009;6(1):18. doi:10.1186/1742-4690-6-18
  • Ouellet DL, Vigneault-Edwards J, Létourneau K, et al. Regulation of host gene expression by HIV-1 TAR microRNAs. Retrovirology. 2013;10(1):86. doi:10.1186/1742-4690-10-86
  • Harwig A, Jongejan A, van Kampen AH, Berkhout B, Das AT. Tat-dependent production of an HIV-1 TAR-encoded miRNA-like small RNA. Nucleic Acids Res. 2016;44(9):4340–4353. doi:10.1093/nar/gkw167
  • Li L, Feng H, Da Q, et al. Expression of HIV-encoded microRNA-TAR and its inhibitory effect on viral replication in human primary macrophages. Arch Virol. 2016;161(5):1115–1123. doi:10.1007/s00705-016-2755-5
  • Omoto S, Ito M, Tsutsumi Y, et al. HIV-1 nef suppression by virally encoded microRNA. Retrovirology. 2004;1(1):44. doi:10.1186/1742-4690-1-44
  • Omoto S, Fujii YR. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol. 2005;86(3):751–755. doi:10.1099/vir.0.80449-0
  • Yamamoto T, Omoto S, Mizuguchi M, et al. Double-stranded nef RNA interferes with human immunodeficiency virus type 1 replication. Microbiol Immunol. 2002;46(11):809–817. doi:10.1111/j.1348-0421.2002.tb02768.x
  • Zhang Y, Fan M, Geng G, et al. A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region. Retrovirology. 2014;11(1):23. doi:10.1186/1742-4690-11-23
  • Kaul D, Ahlawat A, Gupta SD. HIV-1 genome-encoded hiv1-mir-H1 impairs cellular responses to infection. Mol Cell Biochem. 2009;323(1–2):143–148. doi:10.1007/s11010-008-9973-4
  • Kaul D, Khanna A. Evidence and nature of a novel miRNA encoded by HIV-1. Proc Indian Nat Sci Acad. 2006;72(2):91–95.
  • Hariharan M, Scaria V, Pillai B, Brahmachari SK. Targets for human encoded microRNAs in HIV genes. Biochem Biophys Res Commun. 2005;337(4):1214–1218. doi:10.1016/j.bbrc.2005.09.183
  • Leister P, Burgdorf S, Scheidtmann KH. Apoptosis antagonizing transcription factor AATF is a novel coactivator of nuclear hormone receptors. Signal Transduct. 2003;3(1–2):17–25. doi:10.1002/sita.200300020
  • Felzien LK, Woffendin C, Hottiger MO, Subbramanian RA, Cohen EA, Nabel GJ. HIV transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc Natl Acad Sci U S A. 1998;95(9):5281–5286. doi:10.1073/pnas.95.9.5281
  • Kaul D, Hussain A. Cellular AATF gene encodes a novel miRNA that can contribute to HIV-1 latency. Indian J Biochem Biophys. 2009;46(3):237–240.
  • Michael NL, Vahey MT, d’Arcy L, et al. Negative-strand RNA transcripts are produced in human immunodeficiency virus type 1-infected cells and patients by a novel promoter downregulated by Tat. J Virol. 1994;68(2):979–987. doi:10.1128/jvi.68.2.979-987.1994
  • Vanhée-Brossollet C, Thoreau H, Serpente N, D’Auriol L, Lévy JP, Vaquero C. A natural antisense RNA derived from the HIV-1 env gene encodes a protein which is recognized by circulating antibodies of HIV+ individuals. Virology. 1995;206(1):196–202. doi:10.1016/S0042-6822(95)80034-4
  • Tagieva NE, Vaquero C. Expression of naturally occurring antisense RNA inhibits human immunodeficiency virus type 1 heterologous strain replication. J Gen Virol. 1997;78(Pt 10):2503–2511. doi:10.1099/0022-1317-78-10-2503
  • Ludwig L, Ambrus J, Krawczyk K, et al. Human immunodeficiency virus-type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products. Retrovirology. 2006;3(1):80. doi:10.1186/1742-4690-3-80
  • Landry S, Halin M, Lefort S, et al. Detection, characterization and regulation of antisense transcripts in HIV-1. Retrovirology. 2007;4(1):71. doi:10.1186/1742-4690-4-71
  • Kobayashi-Ishihara M, Yamagishi M, Hara T, et al. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology. 2012;9(1):38. doi:10.1186/1742-4690-9-38
  • Saayman S, Ackley A, Turner AW, et al. An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol Ther. 2014;22(6):1164–1175. doi:10.1038/mt.2014.29
  • Wiegand A, Spindler J, Hong FF, et al. Single-cell analysis of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones during ART. Proc Natl Acad Sci U S A. 2017;114(18):E3659–E3668. doi:10.1073/pnas.1617961114
  • Yukl SA, Kaiser P, Kim P, et al. HIV latency in isolated patient CD4+ T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci Transl Med. 2018;10(430). doi:10.1126/scitranslmed.aap9927
  • Ishizaka A, Sato H, Nakamura H, et al. Short intracellular HIV-1 transcripts as biomarkers of residual immune activation in patients on antiretroviral therapy. J Virol. 2016;90(12):5665–5676. doi:10.1128/JVI.03158-15
  • Kaiser P, Joshi SK, Kim P, et al. Assays for precise quantification of total (including short) and elongated HIV-1 transcripts. J Virol Methods. 2017;242:1–8. doi:10.1016/j.jviromet.2016.12.017
  • Lassen KG, Bailey JR, Siliciano RF. Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4ȡ + T cells in vivo. J Virol. 2004;78(17):9105–9114. doi:10.1128/JVI.78.17.9105-9114.2004
  • Boliar S, Russell DG. Lnc(ing)RNAs to the “shock and kill” strategy for HIV-1 cure. Mol Ther Nucleic Acids. 2021;23:1272–1280. doi:10.1016/j.omtn.2021.02.004