42
Views
0
CrossRef citations to date
0
Altmetric
Short Report

Mutation EthAW21R confers co-resistance to protionamide and ethionamide in both Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv

, , , , , , , , , & show all
Pages 891-894 | Published online: 13 Jun 2018

References

  • Wang F, Langley R, Gulten G, et al. Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med. 2007;204(1):73–78.
  • Thee S, Garcia-Prats A, Donald P, Hesseling A, Schaaf H. A review of the use of ethionamide and prothionamide in childhood tuberculosis. Tuberculosis. 2016;97:126–136.
  • Di Perri G, Bonora S. Which agents should we use for the treatment of multidrug-resistant Mycobacterium tuberculosis? J Antimicrob Chemother. 2004;54(3):593–602.
  • Donald PR, Seifart HI. Cerebrospinal fluid concentrations of ethionamide in children with tuberculous meningitis. J Pediatr. 1989;115(3):483–486.
  • Scardigli A, Caminero JA, Sotgiu G, Centis R, Ambrosio L, Migliori GB. Efficacy and tolerability of ethionamide versus prothionamide: a systematic review. Eur Respir J. 2016;48(3):946.
  • Jenner P, Ellard G, Gruer P, Aber V. A comparison of the blood levels and urinary excretion of ethionamide and prothionamide in man. J Antimicrob Chemother. 1984;13(3):267–277.
  • Winder FG. Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria. Biol Mycobact. 1982;1:353–438.
  • Fattorini L, Iona E, Ricci ML, et al. Activity of 16 antimicrobial agents against drug-resistant strains of Mycobacterium tuberculosis. Microb Drug Resist. 1999;5(4):265–270.
  • DeBarber AE, Mdluli K, Bosman M, Bekker L-G, Barry CE. Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2000;97(17):9677–9682.
  • Hanoulle X, Wieruszeski J-M, Rousselot-Pailley P, et al. Selective intracellular accumulation of the major metabolite issued from the activation of the prodrug ethionamide in mycobacteria. J Antimicrob Chemother. 2006;58(4):768–772.
  • Vilchèze C, Jacobs WR Jr. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr. 2014;2(4):MGM2-0014-2013.
  • Banerjee A, Dubnau E, Quemard A, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994;263(5144):227–229.
  • Vilchèze C, Weisbrod TR, Chen B, et al. Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother. 2005;49(2):708–720.
  • Liu T, Wang B, Guo J, et al. Role of folP1 and folP2 genes in the action of sulfamethoxazole and trimethoprim against mycobacteria. J Microbiol Biotechnol. 2015;25(9):1559–1567.
  • Yang F, Njire MM, Liu J, et al. Engineering more stable, selectable marker-free autoluminescent mycobacteria by one step. PLoS One. 2015;10(3):e0119341.
  • Zhang T, Bishai WR, Grosset JH, Nuermberger EL. Rapid assessment of antibacterial activity against Mycobacterium ulcerans by using recombinant luminescent strains. Antimicrob Agents Chemother. 2010;54(7):2806–2813.