380
Views
19
CrossRef citations to date
0
Altmetric
Review

Multiresistant Fusarium Pathogens on Plants and Humans: Solutions in (from) the Antifungal Pipeline?

ORCID Icon, & ORCID Icon
Pages 3727-3737 | Published online: 28 Nov 2019

References

  • Al-Hatmi AMS, Meis JF, de Hoog GS. Fusarium: molecular diversity and intrinsic drug resistance. PLoS Pathog. 2016;12(4):e1005464. doi:10.1371/journal.ppat.100546427054821
  • O’Donnell K, Rooney AP, Proctor RH, et al. Phylogenetic analyses of RPB1 and RPB2 support a middle cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol. 2013;52:20–31. doi:10.1016/j.fgb.2012.12.00423357352
  • O’Donnell K, Ward TJ, Robert VARG, Crous PW, Geiser DM, Kang S. DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica. 2015;43:583–595. doi:10.1007/s12600-015-0484-z
  • Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology, and clinical aspects of Fusarium species. Clin Microbiol Rev. 1994;7:479–504. doi:10.1128/CMR.7.4.4797834602
  • Dean R, Van Kan JA, Pretorius ZA, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414–430. doi:10.1111/j.1364-3703.2011.00783.x22471698
  • Sexton AC, Howlett BJ. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot Cell. 2006;5:1941–1949. doi:10.1128/EC.00277-0617041185
  • Nucci M, Anaissie E. Fusarium infections in immunocompromised patients. Clin Microbiol Rev. 2007;20:695–704. doi:10.1128/CMR.00014-0717934079
  • De Hoog GS, Guarro J, Gené J, et al. Atlas of Clinical Fungi. 4th ed. Utrecht/Reus: Westerdijk Institute/Universitat Rovira i Virgili; 2019.
  • Gauthier G, Keller N. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol. 2013;61:146–157. doi:10.1016/j.fgb.2013.08.01624021881
  • Schroers HJ, Samuels GJ, Zhang N, Short DP, Juba J, Geiser DM. Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia. 2016;108(4):806–819. doi:10.3852/15-25527055573
  • Short DP, O’Donnell K, Thrane U, et al. Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov. Fungal Genet Biol. 2013;53:59–70. doi:10.1016/j.fgb.2013.01.00423396261
  • Ortoneda M, Guarro J, Madrid MP, et al. Fusarium oxysporum as a multi-host model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun. 2004;72(3):1760–1766. doi:10.1128/IAI.72.3.1760-1766.200414977985
  • Nalim FA, Samuels GJ, Wijesundera RL, Geiser DM. New species from the Fusarium solani species complex derived from perithecia and soil in the old World tropics. Mycologia. 2011;103(6):1302–1330. doi:10.3852/10-30721700636
  • Šišić A, Baćanović-Šišić J, Al-Hatmi AMS, et al. The ‘forma specialis’ issue in Fusarium: A case study in Fusarium solani f. sp. pisi. Sci Rep. 2018;8(1):1252. doi:10.1038/s41598-018-19779-z29352160
  • Mehl HL, Epstein L. Fusarium solani species complex isolates conspecific with Fusarium solani f. sp. cucurbitae race 2 from naturally infected human and plant tissue and environmental sources are equally virulent on plants, grow at 37 degrees C and are interfertile. Environ Microbiol. 2007;9(9):2189–2199. doi:10.1111/j.1462-2920.2007.01333.x17686017
  • Zhang N, O’Donnell K, Sutton DA, et al. Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol. 2006;44(6):2186–2190. doi:10.1128/JCM.00120-0616757619
  • Edwards ET. Studies on the Gibberella fujikuroi var. subglutinans the hitherto undescribed ascigerous stage of Fusarium moniliforme var. subglutinans and its pathogenicity on maize in New South Wales. Dep Agric New South Wales Sci Bull. 1935;49:1–68.
  • Schäfer K, Di Pietro A, Gow NA, MacCallum D. Murine model for Fusarium oxysporum invasive fusariosis reveals organ-specific structures for dissemination and long-term persistence. PLoS One. 2014;9(2):e89920. doi:10.1371/journal.pone.008992024587124
  • Al-Hatmi AM, Bonifaz A, de Hoog GS, et al. Keratitis by Fusarium temperatum, a novel opportunist. BMC Infect Dis. 2014;14:588. doi:10.1186/s12879-014-0588-y25388601
  • Boral H, van Diepeningen A, Erdem E, et al. Mycotic keratitis caused by Fusarium solani sensu stricto (FSSC5): a case series. Mycopathologia. 2018;183:835–840. doi:10.1007/s11046-018-0280-729931660
  • Al-Hatmi AMS, Sandoval-Denis M, Nabet C, et al. Fusarium volatile, a new potential pathogen from a human respiratory sample. Fungal Syst Evol. 2019;4:71–181. doi:10.3114/fuse.2019.04.09
  • Ma LJ, van der Does HC, Borkovich KA, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464:367–373. doi:10.1038/nature0885020237561
  • Vlaardingerbroek I, Beerens B, Rose L, et al. Exchange of core chromosomes and horizontal transfer of lineage‐specific chromosomes in Fusarium oxysporum. Environm Microbiol. 2016;18:3702–3713. doi:10.1111/1462-2920.13281
  • Perez-Nadales E, Di Pietro A. The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum. Plant Cell. 2011;23:1171–1185. doi:10.1105/tpc.110.07509321441438
  • Segorbe D, Di Pietro A, Perez-Nadales E, Turra D. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity. Mol Plant Pathol. 2017;18(7):912–924. doi:10.1111/mpp.2017.18.issue-727301316
  • Van Baarlen P, Van Belkum A, Summerbell R, Crous PW, Thomma B. Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev. 2007;31:239–277. doi:10.1111/j.1574-6976.2007.00065.x17326816
  • Gostincar C, Zajc J, Lenassi M, et al. Fungi between extremotolerance and opportunistic pathogenicity on humans. Fungal Divers. 2018;93:195–213. doi:10.1007/s13225-018-0414-8
  • Navarro-Velasco GY, Prados-Rosales RC, Ortíz-Urquiza A, Quesada-Moraga E, Di Pietro A. Galleria mellonella as model host for the trans-kingdom pathogen Fusarium oxysporum. Fungal Genet Biol. 2011;48(12):1124–1129. doi:10.1016/j.fgb.2011.08.00421907298
  • Moretti ML, Busso-Lopes AF, Tararam CA, et al. Airborne transmission of invasive fusariosis in patients with hematologic malignancies. PLoS One. 2018;13:e0196426. doi:10.1371/journal.pone.019642629698435
  • Nucci M, Shoham S, Abdala E, et al. Outcomes of patients with invasive fusariosis who undergo further immunosuppressive treatments, is there a role for secondary prophylaxis? Mycoses. 2019;62(5):413–417. doi:10.1111/myc.2019.62.issue-530720902
  • Wickern GM. Fusarium allergic fungal sinusitis. J Allergy Clin Immunol. 1993;92:624–625. doi:10.1016/0091-6749(93)90087-V8409122
  • van Diepeningen AD, Feng P, Ahmed S, et al. Spectrum of Fusarium infections in tropical dermatology evidenced by multilocus sequencing typing diagnostics. Mycoses. 2015;58:48–57. doi:10.1111/myc.1227325530264
  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13. doi:10.1126/scitranslmed.3004404
  • Leslie JF, Summerell BA. The Fusarium Laboratory Manual. Ames, IA: Blackwell Publishing; 2006.
  • Apple O, Wollenweber HW. Grundlagen einer Monographie der Gattung Fusarium (Link). In Arb K Biol Anst F Land U Forstw. 1910;8:1–207.
  • Wollenweber HW, Reinking OA. The Fusaria: Their Description Injurious Effects and Control. Vol. 8 Berlin: Paul Parey; 1935:1–135.
  • Booth C. The Genus Fusarium. Kew: Commonwealth Mycological Institute; 1971:237.
  • Gerlach W, Nirenberg H. The genus Fusarium-a pictorial atlas. Mitt Biol Bundes Anst Land- Forstw. 1982;209:1–406.
  • Chen M, Zeng J, De Hoog GS, et al. The “species complex” issue in clinically relevant fungi: a case study in Scedosporium apiospermum. Fungal Biol. 2016;120:137–146. doi:10.1016/j.funbio.2015.09.00326781369
  • Kwon-Chung KJ, Bennett JE, Wickes BL, et al. The case for adopting the “species complex” nomenclature for the etiologic agents of cryptococcosis. mSphere. 2017;2:e00357–16. doi:10.1128/mSphere.00357-16
  • Geiser DM, Aoki T, Bacon CW, et al. One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology. 2013;103:400–408. doi:10.1094/PHYTO-07-12-0150-LE23379853
  • Lombard L, van der Merwe NA, Groenewald JZ, Crous PW. Generic concepts in Nectriaceae. Stud Mycol. 2015;80:189–245. doi:10.1016/j.simyco.2014.12.00226955195
  • Sandoval-Denis M, Lombard L, Crous PW. Back to the roots: a reappraisal of Neocosmospora. Persoonia. 2019;43:90–185.
  • Chowdhary A, Kathuria S, Xu J, Meis JF. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog. 2013;9(10):e1003633. doi:10.1371/journal.ppat.100363324204249
  • Chowdhary A, Meis JF. Emergence of azole resistant Aspergillus fumigatus and One Health: time to implement environmental stewardship. Environ Microbiol. 2018;20(4):1299–1301. doi:10.1111/emi.2018.20.issue-429393565
  • Alvarez-Moreno C, Lavergne RA, Hagen F, Morio F, Meis JF, Le Pape P. Fungicide-driven alterations in azole-resistant Aspergillus fumigatus are related to vegetable crops in Colombia, South America. Mycologia. 2019;111(2):217–224. doi:10.1080/00275514.2018.155779630896313
  • Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc Lond B Biol Sci. 2016;371(1709):20150460. doi:10.1098/rstb.2015.046028080986
  • Herkert PF, Al-Hatmi AMS, De Oliveira Salvador GL, et al. Molecular characterization and antifungal susceptibility of clinical Fusarium species from Brazil. Front Microbiol. 2019;10:737. doi:10.3389/fmicb.2019.0073731024507
  • Wiederhold NP. Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist. 2017;10:249–259. doi:10.2147/IDR.S12491828919789
  • Walsh TJ, Groll A, Hiemenz J, Fleming R, Roilides E, Anaissie E. Infections due to emerging and uncommon medically important fungal pathogens. Clin Microbiol Infect. 2004;10(Suppl 1):48–66. doi:10.1111/j.1470-9465.2004.00839.x14748802
  • Lackner M, Hagen F, Meis JF, et al. Susceptibility and diversity in the therapy-refractory genus Scedosporium. Antimicrob Agents Chemother. 2014;58(10):5877–5885. doi:10.1128/AAC.03211-1425070092
  • Chowdhary A, Prakash A, Sharma C, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018;73(4):891–899. doi:10.1093/jac/dkx48029325167
  • Al-Hatmi AMS, Bonifaz A, Ranque S, De Hoog GS, Verweij PE, Meis JF. Current antifungal treatment of fusariosis. Int J Antimicrob Agents. 2018;51(3):326–332. doi:10.1016/j.ijantimicag.2017.06.01728705676
  • Scorzoni L, Silva ACAP, Marcos CM, et al. Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol. 2017;8:1–23.28197127
  • Fan J, Urban M, Parker JE, et al. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. New Phytol. 2013;198:821–835. doi:10.1111/nph.1219323442154
  • Katiyar SK, Edlind TD. Role for Fks1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 2009;53(5):1772–1778. doi:10.1128/AAC.00020-0919258277
  • Cannon RD, Lamping E, Holmes AR, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009;22:291–321. doi:10.1128/CMR.00051-0819366916
  • Becher R, Weihmann F, Deising HB, Wirsel SG. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genomics. 2011;12:52. doi:10.1186/1471-2164-12-5221255412
  • Calvet HM, Yeaman MR, Filler SG. Reversible fluconazole resistance in Candida albicans: a potential in vitro model. Antimicrob Agents Chemother. 1997;41:535–539. doi:10.1128/AAC.41.3.5359055988
  • Sionov E, Chang YC, Garraffo HM, Kwon-Chung KJ. Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob Agents Chemother. 2009;53:2804–2815. doi:10.1128/AAC.00295-0919414582
  • Tobin MB, Peery RB, Skatrud PL. Genes encoding multiple drug resistance-like proteins in Aspergillus fumigatus and Aspergillus flavus. Gene. 1997;200:11–23. doi:10.1016/S0378-1119(97)00281-39373135
  • Mellado E, Garcia-Effron G, Alcázar-Fuoli L, et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother. 2007;51:1897–1904. doi:10.1128/AAC.01092-0617371828
  • Diaz-Trujillo C, da Cunha C, Chong P, Etienne Duveiller and Pawan K. Singh et al. Azole resistance is related to overexpression of the CYP51 gene in Mycosphaerella fijiensis In: Book of Abstracts EPS PhD Autumn School ‘host-Microbe Interactomics’. the Netherlands: Wageningen; 2011:26–27.
  • Denning DW, Venkateswarlu K, Oakley KL, Anderson MJ, Manning NJ, Stevens DA. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 1997;41:1364–1368. doi:10.1128/AAC.41.6.13649174200
  • Snelders E, Rijs AJ, Kema GH, et al. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol. 2009;75:4053–4057. doi:10.1128/AEM.00231-0919376899
  • Lucas JA, Hawkins NJ, Fraaije BA. The evolution of fungicide resistance. Adv Appl Microbiol. 2015;90:29–92.25596029
  • Kretschmer M, Leroch M, Mosbach A, et al. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog. 2009;5(12):e1000696. doi:10.1371/journal.ppat.100069620019793
  • Mouches C, Pasteur N, Berge JB, et al. Amplification of an esterase gene is responsible for insecticide resistance in a Californian Culex mosquito. Science. 1986;233:778–780. doi:10.1126/science.37555463755546
  • Verweij PE, Snelders E, Kema GHJ, Mellado E, Melchers WGJ. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis. 2009;9:789–795. doi:10.1016/S1473-3099(09)70265-819926038
  • Al-Hatmi AM, van Diepeningen AD, Curfs-Breuker I, de Hoog GS, Meis JF. Specific antifungal susceptibility profiles of opportunists in the Fusarium fujikuroi complex. J Antimicrob Chemother. 2015;70:1068–1071. doi:10.1093/jac/dku50525538167
  • Thomas PA. Current perspectives on ophthalmic mycoses. Clin Microbiol Rev. 2003;16:730–797. doi:10.1128/CMR.16.4.730-797.200314557297
  • Qiu S, Zhao GQ, Lin J, et al. Natamycin in the treatment of fungal keratitis: a systematic review and meta-analysis. Int J Ophthalmol. 2015;8(3):597–602. doi:10.3980/j.issn.2222-3959.2015.03.2926086015
  • Oliveira Dos Santos C, Kolwijck E, van der Lee HA, et al. In vitro activity of chlorhexidine compared with seven antifungal agents against 98 Fusarium isolates recovered from fungal keratitis patients. Antimicrob Agents Chemother. 2019;63(8):e02669–18. doi:10.1128/AAC.02669-1831182529
  • Kunt Z, Yağmur M, Kandemir H, et al. In vitro efficacy of chlorhexidine and a riboflavin/UVA combination on fungal agents of keratitis. Curr Eye Res. 2019;14:1–5. doi:10.1080/02713683.2019.1652916
  • Todokoro D, Suzuki T, Tamura T, et al. Efficacy of luliconazole against broad-range filamentous fungi including Fusarium solani species complex causing fungal keratitis. Cornea. 2019;38(2):238–242. doi:10.1097/ICO.000000000000181230422866
  • Al-Hatmi AM, Meletiadis J, Curfs-Breuker I, Bonifaz A, Meis JF, De Hoog GS. In vitro combinations of natamycin with voriconazole, itraconazole and micafungin against clinical Fusarium strains causing keratitis. J Antimicrob Chemother. 2016;71:953–955. doi:10.1093/jac/dkv42126702918
  • Prajna NV, Krishnan T, Mascarenhas J, et al. The mycotic ulcer treatment trial: a randomized trial comparing natamycin vs. voriconazole. JAMA Ophthalmol. 2013;131:422–429. doi:10.1001/jamaophthalmol.2013.149723710492
  • Rees CA, Bao B, Zegans ME, Cramera RA. Natamycin and voriconazole exhibit synergistic interactions with nonantifungal ophthalmic agents against Fusarium species ocular isolates. Antimicrob Agents Chemother. 2019;63:e02505–18. doi:10.1128/AAC.02505-1831010869
  • Varon AG, Nouer SA, Barreiros G, et al. Superficial skin lesions positive for Fusarium are associated with subsequent development of invasive fusariosis. J Infect. 2014;68:85–89. doi:10.1016/j.jinf.2013.08.01123994063
  • Galletti J, Negri M, Grassi FL, Kioshima-Cotica ÉS, Svidzinski TI. Fusarium spp. is able to grow and invade healthy human nails as a single source of nutrients. Eur J Clin Microbiol Infect Dis. 2015;34:1767–1772. doi:10.1007/s10096-015-2410-126007318
  • Tupaki-Sreepurna A, Jishnu BT, Thanneru V, et al. An assessment of in vitro antifungal activities of efinaconazole and itraconazole against common non-dermatophyte fungi causing onychomycosis. J Fungi. 2017;3(2):E20. doi:10.3390/jof3020020
  • Sahni K, Singh S, Dogra S. Newer topical treatments in skin and nail dermatophyte infections. Indian Dermatol Online J. 2018;9(3):149–158. doi:10.4103/idoj.IDOJ_281_1729854633
  • Abastabar M, Al-Hatmi AMS, Vafaei Moghaddam M, et al. Potent activity of luliconazole, lanoconazole and eight comparators against molecularly characterized Fusarium species. Antimicrob Agents Chemother. 2018;62(5):e00009–18. doi:10.1128/AAC.00009-1829530844
  • Ortoneda M, Capilla J, Pastor FJ, Pujol I, Guarro J. Efficacy of liposomal amphotericin B in treatment of systemic murine fusariosis. Antimicrob Agents Chemother. 2002;46:2273–2275. doi:10.1128/AAC.46.7.2273-2275.200212069988
  • Falci DR, Pasqualotto AC. Profile of isavuconazole and its potential in the treatment of severe invasive fungal infections. Infect Drug Resist. 2013;6:163–174. doi:10.2147/IDR.S5134024187505
  • Cornely OA, Ostrosky-Zeichner L, Rahav G, et al. Outcomes in patients with invasive mold disease caused by Fusarium or Scedosporium spp. treated with isavuconazole: experience from the VITAL and SECURE trials. Presented at: 54th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) ASM Washington, DC, USA, 5–9 9 2014 (Abstract no. M-1760).
  • Marty FM, Cornely OA, Mullane KM, et al. Isavuconazole for treatment of invasive fungal diseases caused by more than one fungal species. Mycoses. 2018;61(7):485–497. doi:10.1111/myc.2018.61.issue-729611227
  • Nakamura I, Yoshimura S, Masaki T, et al. ASP2397: a novel antifungal agent produced by Acremonium persicinum MF-347833. J Antibiot (Tokyo). 2017;70(1):45–51. doi:10.1038/ja.2016.10727599768
  • Koselny K, Green J, DiDone L, et al. The celecoxib derivative AR-12 has broad spectrum antifungal activity in vitro and improves the activity of fluconazole in a murine model of cryptococcosis. Antimicrob Agents Chemother. 2016;60:7115–7127. doi:10.1128/AAC.01061-1627645246
  • Koselny K, Green J, Favazzo L, et al. Antitumor/antifungal celecoxib derivative AR-12 is a non-nucleoside inhibitor of the ANL-family adenylating enzyme acetyl CoA synthetase. ACS Infect Dis. 2016;2(4):268–280. doi:10.1021/acsinfecdis.5b0013427088128
  • Oliver JD, Sibley GE, Beckmann N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci U S A. 2016;113(45):12809–12814. doi:10.1073/pnas.160830411327791100
  • Perfect JR. The antifungal pipeline: a reality check. Nat Rev Drug Discov. 2017;16(9):603–616. doi:10.1038/nrd.2017.4628496146
  • Jørgensen KM, Astvad KMT, Hare RK, Arendrup MC. EUCAST determination of olorofim (F901318) susceptibility of mold species, method validation, and MICs. Antimicrob Agents Chemother. 2018;62:e00487–18. doi:10.1128/AAC.00487-1829784842
  • Miyazaki M, Horii T, Hata K, et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother. 2011;55:4652–4658. doi:10.1128/AAC.00291-1121825291
  • Castanheira M, Duncanson FP, Diekema DJ, Guarro J, Jones RN, Pfaller MA. Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods against Fusarium and Scedosporium species identified using molecular methods. Antimicrob Agents Chemother. 2012;56(1):352–357. doi:10.1128/AAC.05414-1122083469
  • Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M. Activity of MK-3118, a new oral glucan synthase inhibitor tested against Candida spp. by two international methods (CLSI and EUCAST). J Antimicrob Chemother. 2013;68:858–863. doi:10.1093/jac/dks46623190764
  • Lamoth F, Alexander BD. Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mold isolates. Antimicrob Agents Chemother. 2015;59:4308–4311. doi:10.1128/AAC.00234-1525896696
  • Mitsuyama J, Nomura N, Hashimoto K, et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother. 2008;52(4):1318–1324. doi:10.1128/AAC.01159-0718227186
  • Shibata T, Takahashi T, Yamada E, et al. T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob Agents Chemother. 2012;56:5892–5897. doi:10.1128/AAC.05954-1122948882
  • Pianalto KM, Alspaugh JA. New horizons in antifungal therapy. J Fungi. 2016;2(4):E26. doi:10.3390/jof2040026
  • Pfaller MA, Messer SA, Georgopapadakou N, Martell LA, Besterman JM, Diekema DJ. Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol. 2009;47:3797–3804. doi:10.1128/JCM.00618-0919794038
  • Pfaller MA, Rhomberg PR, Messer SA, Castanheira M. In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species. Diagn Microbiol Infect Dis. 2015;81:259–263. doi:10.1016/j.diagmicrobio.2014.11.00825600842