357
Views
7
CrossRef citations to date
0
Altmetric
Review

Optimal Management of Complicated Infections in the Pediatric Patient: The Role and Utility of Ceftazidime/Avibactam

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1763-1773 | Published online: 12 Jun 2020

References

  • Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–1301. doi:10.1017/ice.2016.17427573805
  • Bassetti M, Russo A, Carnelutti A, La Rosa A, Righi E. Antimicrobial resistance and treatment: an unmet clinical safety need. Expert Opin Drug Saf. 2018;17(7):669–680. doi:10.1080/14740338.2018.148896229897796
  • Bassetti M, Peghin M, Vena A, Giacobbe DR. Treatment of infections due to MDR gram-negative bacteria. Front Med. 2019;6:74. doi:10.3389/fmed.2019.00074
  • Larru B, Gong W, Vendetti N, et al. Bloodstream infections in hospitalized children: epidemiology and antimicrobial susceptibilities. Pediatr Infect Dis J. 2016;35(5):507–510. doi:10.1097/INF.000000000000105726766146
  • Chiotos K, Tamma PD, Flett KB, et al. Increased 30-day mortality associated with carbapenem-resistant enterobacteriaceae in children. Open Forum Infect Dis. 2018;5(10):ofy222. doi:10.1093/ofid/ofy22230338267
  • Ivady B, Kenesei E, Toth-Heyn P, et al. Factors influencing antimicrobial resistance and outcome of Gram-negative bloodstream infections in children. Infection. 2016;44(3):309–321. doi:10.1007/s15010-015-0857-826546372
  • Laxminarayan R, Matsoso P, Pant S, et al. Access to effective antimicrobials: a worldwide challenge. Lancet. 2016;387(10014):168–175. doi:10.1016/S0140-6736(15)00474-226603918
  • Folgori L, Bielicki J. Future challenges in pediatric and neonatal sepsis: emerging pathogens and antimicrobial resistance. J Pediatr Intensive Care. 2019;8(1):17–24. doi:10.1055/s-0038-167753531073504
  • Toubiana J, Timsit S, Ferroni A, et al. Community-onset extended-spectrum beta-lactamase-producing enterobacteriaceae invasive infections in children in a university hospital in France. Medicine. 2016;95(12):e3163. doi:10.1097/MD.000000000000316327015202
  • Biedenbach DJ, Moet GJ, Jones RN. Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997–2002). Diagn Microbiol Infect Dis. 2004;50(1):59–69. doi:10.1016/j.diagmicrobio.2004.05.00315380279
  • Logan LK, Braykov NP, Weinstein RA, Laxminarayan R. Program CDCEP: extended-Spectrum beta-Lactamase-Producing and Third-Generation Cephalosporin-Resistant Enterobacteriaceae in Children: trends in the United States, 1999–2011. J Pediatric Infect Dis Soc. 2014;3(4):320–328. doi:10.1093/jpids/piu01026625452
  • Flokas ME, Karanika S, Alevizakos M, Mylonakis E. Prevalence of ESBL-producing enterobacteriaceae in pediatric bloodstream infections: a systematic review and meta-analysis. PLoS One. 2017;12(1):e0171216. doi:10.1371/journal.pone.017121628141845
  • Bassetti M, Carnelutti A, Peghin M. Patient specific risk stratification for antimicrobial resistance and possible treatment strategies in gram-negative bacterial infections. Expert Rev Anti Infect Ther. 2017;15(1):55–65. doi:10.1080/14787210.2017.125184027766913
  • Goodman KE, Lessler J, Cosgrove SE, et al. Antibacterial resistance leadership G: a clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum beta-lactamase-producing organism. Clin Infect Dis. 2016;63(7):896–903. doi:10.1093/cid/ciw42527358356
  • Sick-Samuels AC, Goodman KE, Rapsinski G, et al. A decision tree using patient characteristics to predict resistance to commonly used broad-spectrum antibiotics in children with gram-negative bloodstream infections. J Pediatric Infect Dis Soc. 2019;9(2):142–149.
  • Logan LK. Carbapenem-resistant enterobacteriaceae: an emerging problem in children. Clin Infect Dis. 2012;55(6):852–859. doi:10.1093/cid/cis54322700827
  • Chiotos K, Han JH, Tamma PD. Carbapenem-Resistant Enterobacteriaceae Infections in Children. Curr Infect Dis Rep. 2016;18(1):2. doi:10.1007/s11908-015-0510-926711126
  • Logan LK, Renschler JP, Gandra S, Weinstein RA, Laxminarayan R. Centers for disease c, prevention epicenters p: carbapenem-resistant enterobacteriaceae in children, United States, 1999–2012. Emerg Infect Dis. 2015;21(11):2014–2021. doi:10.3201/eid2111.15054826486124
  • Kehl SC, Dowzicky MJ. Global assessment of antimicrobial susceptibility among Gram-negative organisms collected from pediatric patients between 2004 and 2012: results from the Tigecycline Evaluation and Surveillance Trial. J Clin Microbiol. 2015;53(4):1286–1293. doi:10.1128/JCM.03184-1425653413
  • Chiotos K, Tamma PD, Flett KB, et al. Multicenter study of the risk factors for colonization or infection with carbapenem-resistant enterobacteriaceae in children. Antimicrob Agents Chemother. 2017;61(12). doi:10.1128/AAC.01440-17
  • Folgori L, Bielicki J, Heath PT, Sharland M. Antimicrobial-resistant Gram-negative infections in neonates: burden of disease and challenges in treatment. Curr Opin Infect Dis. 2017;30(3):281–288. doi:10.1097/QCO.000000000000037128306563
  • Rutter WC, Burgess DR, Burgess DS. Increasing incidence of multidrug resistance among cystic fibrosis respiratory bacterial isolates. Microb Drug Resist. 2017;23(1):51–55. doi:10.1089/mdr.2016.004827326758
  • Logan LK, Gandra S, Mandal S, et al. Prevention epicenters program uscfdc, prevention: multidrug- and carbapenem-resistant pseudomonas aeruginosa in children, United States, 1999–2012. J Pediatric Infect Dis Soc. 2017;6(4):352–359. doi:10.1093/jpids/piw06427856730
  • Keepers TR, Gomez M, Celeri C, Nichols WW, Krause KM. Bactericidal activity, absence of serum effect, and time-kill kinetics of ceftazidime-avibactam against beta-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(9):5297–5305. doi:10.1128/AAC.02894-1424957838
  • Temkin E, Torre-Cisneros J, Beovic B, et al. Ceftazidime-avibactam as salvage therapy for infections caused by carbapenem-resistant organisms. Antimicrob Agents Chemother. 2017;61(2). doi:10.1128/AAC.01964-16
  • Humphries RM, Hindler JA, Wong-Beringer A, Miller SA. Activity of ceftolozane-tazobactam and ceftazidime-avibactam against beta-lactam-resistant pseudomonas aeruginosa isolates. Antimicrob Agents Chemother. 2017;61(12). doi:10.1128/AAC.01858-17
  • Karlowsky JA, Kazmierczak KM, Bouchillon SK, de Jonge BLM, Stone GG, Sahm DF. In vitro activity of ceftazidime-avibactam against clinical isolates of enterobacteriaceae and pseudomonas aeruginosa collected in latin American countries: results from the INFORM global surveillance program, 2012 to 2015. Antimicrob Agents Chemother. 2019;63(4). doi:10.1128/AAC.01814-18
  • Bassetti M, Vena A, Castaldo N, Righi E, Peghin M. New antibiotics for ventilator-associated pneumonia. Curr Opin Infect Dis. 2018;31(2):177–186. doi:10.1097/QCO.000000000000043829337703
  • Singh R, Kim A, Tanudra MA, et al. Pharmacokinetics/pharmacodynamics of a beta-lactam and beta-lactamase inhibitor combination: a novel approach for aztreonam/avibactam. J Antimicrob Chemother. 2015;70(9):2618–2626. doi:10.1093/jac/dkv13226024868
  • Hobson CA, Bonacorsi S, Fahd M, et al. Successful treatment of bacteremia due to NDM-1-producing Morganella morganii with aztreonam and ceftazidime-avibactam combination in a pediatric patient with hematologic malignancy. Antimicrob Agents Chemother. 2019;63(2). doi:10.1128/AAC.00779-19
  • Deshpande D, Srivastava S, Chapagain M, et al. Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis. Sci Adv. 2017;3(8):e1701102. doi:10.1126/sciadv.170110228875168
  • Deshpande D, Srivastava S, Chapagain ML, et al. The discovery of ceftazidime/avibactam as an anti-Mycobacterium avium agent. J Antimicrob Chemother. 2017;72(suppl_2):i36–i42. doi:10.1093/jac/dkx30628922808
  • Shields RK, Chen L, Cheng S, et al. Emergence of Ceftazidime-avibactam resistance due to plasmid-borne blakpc-3 mutations during treatment of carbapenem-resistant klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017;61(3):e02097.28031201
  • Tamma PD, Fan Y, Bergman Y, et al. Successful Treatment of Persistent Burkholderia cepacia Complex Bacteremia with Ceftazidime-Avibactam. Antimicrob Agents Chemother. 2018;62(4):e02213–e02217. doi:10.1128/AAC.02213-1729588357
  • European Union Clinical Trials Register [homepage on the Internet]. Amsterdam: European Medicines Agency (EMA). Available from: https://www.clinicaltrialsregister.eu. Accessed May 31, 2020.
  • ClinicalTrial.gov [homepage on the Internet]. Bethesda: National Institutes of Health. Available from: https://clinicaltrials.gov. Accessed May 31, 2020.
  • AstraZeneca AB. A Phase I Study to Assess the Pharmacokinetics, Safety and Tolerability of a Single Dose of Ceftazidime Avibactam (CAZ AVI) in Children From 3 Months of Age to <18 Years Who Are Receiving Systemic Antibiotic Therapy for Suspected or Confirmed Infection. Available from: https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-001900-13/results. EudraCT number: 2013-001900-13 Accessed May 31, 2020.
  • Pfizer. A Phase I Study to Assess the Pharmacokinetics, Safety and Tolerability of a Single Dose of Ceftazidime-Avibactam (CAZ-AVI) in Children From 3 Months of Age to <18 Years Who Are Receiving Systemic Antibiotic Therapy for Suspected or Confirmed Infection. Available from: https://clinicaltrials.gov/ct2/show/NCT1893346. NLM identifier: NCT1893346 Accessed May 31, 2020.
  • Bradley JS, Armstrong J, Arrieta A, et al. Phase I study assessing the pharmacokinetic profile, safety, and tolerability of a single dose of ceftazidime-avibactam in hospitalized pediatric patients. Antimicrob Agents Chemother. 2016;60(10):6252–6259. doi:10.1128/AAC.00862-1627503642
  • Pfizer. A Phase I, Open-Label, Single-dose Study to Assess the Pharmacokinetics, Safety and Tolerability of Ceftazidime-Avibactam (CAZ-AVI) in Children From 3 Months to Less than 18 Years of Age Who Are Hospitalized and Receiving Systemic Antibiotic Therapy for Suspected or Confirmed Nosocomial Pneumonia, Including Ventilator Associated Pneumonia. Avaible from: https://clinicaltrials.gov/ct2/show/NCT4040621. NLM identifier: NCT4040621. Accessed May 31, 2020.
  • Pfizer. A single blind, randomised, multi-centre, active controlled, trial to evaluate safety, tolerability, pharmacokinetics and efficacy of ceftazidime and avibactam compared with cefepime in children from 3 months to less than 18 years of age with complicated urinary tract infections (cUTIs). Avaible from: https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-003244-13/PL. EudraCT number: 2014-003244-13. Accessed May 31, 2020.
  • Pfizer. Evaluation of Safety, Pharmacokinetics and Efficacy of Ceftazidime and Avibactam (CAZ-AVI) Compared With Cefepime in Children From 3 Months to Less Than 18 Years of Age With Complicated Urinary Tract Infections (cUTIs). Avaible from: https://clinicaltrials.gov/ct2/show/NCT2497781. NLM identifier: NCT2497781. Accessed May 31, 2020.
  • Pfizer. A single blind, randomised, multi-centre, active controlled, trial to evaluate safety, tolerability, pharmacokinetics and efficacy of ceftazidime and avibactam when given in combination with metronidazole, compared with meropenem, in children from 3 months to less than 18 years of age with complicated intra-abdominal infections (cIAIs). Avaible from: https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-003242-28/GR. EudraCT number: 2014-003242-28. Accessed May 31, 2020.
  • Bradley JS, Roilides E, Broadhurst H, et al. Safety and Efficacy of Ceftazidime-Avibactam in the Treatment of Children >/=3 Months to <18 Years With Complicated Urinary Tract Infection: Results from a Phase 2 Randomized, Controlled Trial. Pediatr Infect Dis J. 2019;38(9):920–928. doi:10.1097/INF.000000000000239531335570
  • Bradley JS, Broadhurst H, Cheng K, et al. Safety and Efficacy of Ceftazidime-Avibactam Plus Metronidazole in the Treatment of Children >/=3 Months to <18 Years With Complicated Intra-Abdominal Infection: Results From a Phase 2, Randomized, Controlled Trial. Pediatr Infect Dis J. 2019;38(8):816–824. doi:10.1097/INF.000000000000239231306396
  • Esposito P, Sbrana F, Di Toro A, Gombos S, Tascini C. Ceftazidime-avibactam salvage therapy in newborn with KPC-producing Klebsiella pneumoniae invasive infections. Minerva Anestesiol. 2019;85(7):804–805. doi:10.23736/S0375-9393.19.13521-331271023
  • Algwizani A, Alzunitan M, Alharbi A, et al. Experience with ceftazidime-avibactam treatment in a tertiary care center in Saudi Arabia. J Infect Public Health. 2018;11(6):793–795. doi:10.1016/j.jiph.2018.04.01329706317
  • Mosley JF, Smith LL, Parke CK, Brown JA, Wilson AL, Gibbs LV. Ceftazidime-avibactam (Avycaz): for the treatment of complicated intra-abdominal and urinary tract infections. P T peer-Rev J Formulary Manage. 2016;41(8):479–483.
  • Vardakas KZ, Voulgaris GL, Maliaros A, Samonis G, Falagas ME. Prolonged versus short-term intravenous infusion of antipseudomonal beta-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect Dis. 2018;18(1):108–120. doi:10.1016/S1473-3099(17)30615-129102324
  • Shields RK, Potoski BA, Haidar G, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant enterobacteriaceae infections. Clin Infect Dis. 2016;63(12):1615–1618. doi:10.1093/cid/ciw63627624958
  • Aitken SL, Tarrand JJ, Deshpande LM, et al. High rates of nonsusceptibility to ceftazidime-avibactam and identification of new delhi metallo-beta-lactamase production in enterobacteriaceae bloodstream infections at a major cancer center. Clin Infect Dis. 2016;63(7):954–958. doi:10.1093/cid/ciw39827313265
  • Gaibani P, Campoli C, Lewis RE, et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J Antimicrob Chemother. 2018;73(6):1525–1529. doi:10.1093/jac/dky08229566151
  • Sibley D, Simar S, Ashcraft D, Pankey G. In Vitro synergy of ceftazidime-avibactam plus rifampin against pseudomonas aeruginosa. Open Forum Infect Dis. 2016;3(suppl_1). doi:10.1093/ofid/ofw172.1568
  • Winkler ML, Papp-Wallace KM, Hujer AM, et al. Unexpected Challenges in Treating Multidrug-Resistant Gram-Negative Bacteria: Resistance to Ceftazidime-Avibactam in Archived Isolates of <span class="named-content genus-species” id="named-content-1">Pseudomonas aeruginosa</span>. Antimicrob Agents Chemother. 2015;59(2):1020–1029. doi:10.1128/AAC.04238-1425451057
  • Papp-Wallace KM, Zeiser ET, Becka SA, et al. Ceftazidime-Avibactam in combination with fosfomycin: a novel therapeutic strategy against multidrug-resistant pseudomonas aeruginosa. J Infect Dis. 2019;220(4):666–676. doi:10.1093/infdis/jiz14931099835
  • Gaibani P, Lewis RE, Volpe SL, et al. In vitro interaction of ceftazidime-avibactam in combination with different antimicrobials against KPC-producing Klebsiella pneumoniae clinical isolates. Int J Infect Dis. 2017;65:1–3. doi:10.1016/j.ijid.2017.09.01728951106
  • Gaudereto JJ, Perdigao Neto LV, Leite GC, et al. Synergistic effect of ceftazidime-avibactam with meropenem against panresistant, carbapenemase-harboring acinetobacter baumannii and serratia marcescens investigated using time-kill and disk approximation assays. Antimicrob Agents Chemother. 2019;63(5). doi:10.1128/AAC.02367-18
  • Jayol A, Nordmann P, Poirel L, Dubois V. Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2017;73(2):542–544. doi:10.1093/jac/dkx393
  • Barlow G, Morice A. Successful treatment of resistant Burkholderia multivorans infection in a patient with cystic fibrosis using ceftazidime/avibactam plus aztreonam. J Antimicrob Chemother. 2018;73(8):2270–2271. doi:10.1093/jac/dky13629912407
  • Caston JJ, Lacort-Peralta I, Martin-Davila P, et al. Clinical efficacy of ceftazidime/avibactam versus other active agents for the treatment of bacteremia due to carbapenemase-producing Enterobacteriaceae in hematologic patients. Int J Infect Dis. 2017;59:118–123. doi:10.1016/j.ijid.2017.03.02128392315
  • Wilson APR. Sparing carbapenem usage. J Antimicrob Chemother. 2017;72(9):2410–2417. doi:10.1093/jac/dkx18128637307
  • Baquero-Artigao F, Del Rosal Rabes T. Fosfomycin in the pediatric setting: evidence and potential indications. Rev esp de quimioterapia. 2019;32(Suppl 1):55–61.
  • NCT3978091.
  • Li G, Standing JF, Bielicki J, et al. The potential role of fosfomycin in neonatal sepsis caused by multidrug-resistant bacteria. Drugs. 2017;77(9):941–950. doi:10.1007/s40265-017-0745-x28456943
  • Iarikov D, Wassel R, Farley J, Nambiar S. Adverse events associated with fosfomycin use: review of the literature and analyses of the FDA adverse event reporting system database. Infect Dis Ther. 2015;4(4):433–458. doi:10.1007/s40121-015-0092-826437630
  • Traunmuller F, Popovic M, Konz KH, Vavken P, Leithner A, Joukhadar C. A reappraisal of current dosing strategies for intravenous fosfomycin in children and neonates. Clin Pharmacokinet. 2011;50(8):493–503. doi:10.2165/11592670-000000000-0000021740073
  • Oteo J, Bautista V, Lara N, et al. Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. J Antimicrob Chemother. 2010;65(11):2459–2463. doi:10.1093/jac/dkq34620851815
  • Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin Microbiol Infect. 2019;25(8):943–950. doi:10.1016/j.cmi.2019.04.01331004767
  • Nation RL. Dose suggestions for intravenous colistin in pediatric patients: caution required. Clin Infect Dis. 2018;66(5):810–811. doi:10.1093/cid/cix104829211826
  • Nation RL, Garonzik SM, Thamlikitkul V, et al. Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis. 2017;64(5):565–571. doi:10.1093/cid/ciw83928011614
  • Antachopoulos C, Karvanen M, Iosifidis E, et al. Serum and cerebrospinal fluid levels of colistin in pediatric patients. Antimicrob Agents Chemother. 2010;54(9):3985–3987. doi:10.1128/AAC.01799-0920585114
  • Nakwan N, Usaha S, Chokephaibulkit K, Villani P, Regazzi M, Imberti R. Pharmacokinetics of colistin following a single dose of intravenous colistimethate sodium in critically ill neonates. Pediatr Infect Dis J. 2016;35(11):1211–1214. doi:10.1097/INF.000000000000126327276179
  • Iosifidis E, Antachopoulos C, Ioannidou M, et al. Colistin administration to pediatric and neonatal patients. Eur J Pediatr. 2010;169(7):867–874. doi:10.1007/s00431-009-1137-320119725
  • Barco S, Castagnola E, Mesini A, Tripodi G, Cangemi G. Potential pitfalls in LC-MS/MS quantification of colistin for therapeutic drug monitoring of patients treated with colistimethate. J Pharm Biomed Anal. 2019;170:193–195. doi:10.1016/j.jpba.2019.03.02330928894
  • Mesini A, Loy A, Gattorno M, et al. Colistin area under the time-concentration in children treated with intravenous loading dose and maintenance therapy. Clin Infect Dis. 2018;66(5):808–809. doi:10.1093/cid/cix75729020309
  • Iosifidis E, Violaki A, Michalopoulou E, et al. Use of tigecycline in pediatric patients with infections predominantly due to extensively drug-resistant gram-negative bacteria. J Pediatric Infect Dis Soc. 2017;6(2):123–128. doi:10.1093/jpids/piw00927000866
  • Purdy J, Jouve S, Yan JL, et al. Pharmacokinetics and safety profile of tigecycline in children aged 8 to 11 years with selected serious infections: a multicenter, open-label, ascending-dose study. Clin Ther. 2012;34(2):496–507.e491. doi:10.1016/j.clinthera.2011.12.01022249106
  • Gustinetti G, Cangemi G, Bandettini R, Castagnola E. Pharmacokinetic/pharmacodynamic parameters for treatment optimization of infection due to antibiotic resistant bacteria: a summary for practical purposes in children and adults. J Chemother. 2018;30(2):65–81. doi:10.1080/1120009X.2017.137790929025364
  • Zavascki AP, Bulitta JB, Landersdorfer CB. Combination therapy for carbapenem-resistant Gram-negative bacteria. Expert Rev Anti Infect Ther. 2013;11(12):1333–1353. doi:10.1586/14787210.2013.84552324191943
  • Mastrolia MV, Galli L, De Martino M, Chiappini E. Use of tigecycline in pediatric clinical practice. Expert Rev Anti Infect Ther. 2017;15(6):605–612. doi:10.1080/14787210.2017.131806428395551
  • McCracken GH. Aminoglycoside toxicity in infants and children. Am J Med. 1986;80(6, Supplement 2):172–178. doi:10.1016/0002-9343(86)90497-3
  • Castagnola E, Dallorso S, Haupt R. Administration schedule and ototoxicity of amikacin in children with cancer. Pediatr Blood Cancer. 2014;61(2):192. doi:10.1002/pbc.2474023955952
  • Alqahtani S, Abouelkheir M, Alsultan A, et al. Optimizing amikacin dosage in pediatrics based on population pharmacokinetic/pharmacodynamic modeling. Pediatric Drugs. 2018;20(3):265–272. doi:10.1007/s40272-018-0288-y29569124
  • Fisman DN, Kaye KM. Once-daily dosing of aminoglycoside antibiotics. Infect Dis Clin North Am. 2000;14(2):475–487. doi:10.1016/S0891-5520(05)70259-210829267
  • Hirai J, Hagihara M, Kato H, et al. Investigation on rifampicin administration from the standpoint of pharmacokinetics/pharmacodynamics in a neutropenic murine thigh infection model. J Infect Chemother. 2016;22(6):387–394. doi:10.1016/j.jiac.2016.02.01127029221
  • Sendi P, Zimmerli W. The use of rifampin in staphylococcal orthopaedic-device-related infections. Clin Microbiol Infect. 2017;23(6):349–350. doi:10.1016/j.cmi.2016.10.00227746393
  • Shabaan AE, Nour I, Elsayed Eldegla H, Nasef N, Shouman B, Abdel-Hady H. Conventional Versus Prolonged Infusion of Meropenem in Neonates With Gram-negative Late-onset Sepsis: A Randomized Controlled Trial. Pediatr Infect Dis J. 2017;36(4):358–363. doi:10.1097/INF.000000000000144527918382
  • Lorente L, Lorenzo L, Martín MM, Jiménez A, Mora ML. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann Pharmacother. 2006;40(2):219–223. doi:10.1345/aph.1G46716449546
  • Yu Z, Pang X, Wu X, Shan C, Jiang S. Clinical outcomes of prolonged infusion (extended infusion or continuous infusion) versus intermittent bolus of meropenem in severe infection: A meta-analysis. PLoS One. 2018;13(7):e0201667. doi:10.1371/journal.pone.020166730059536
  • Abdul-Aziz MH, Lipman J, Akova M, et al. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J Antimicrob Chemother. 2016;71(1):196–207. doi:10.1093/jac/dkv28826433783
  • Cies JJ, Moore WS, Enache A, Chopra A. Population Pharmacokinetics and Pharmacodynamic Target Attainment of Meropenem in Critically Ill Young Children. J Pediatr Pharmacol Ther. 2017;22(4):276–285. doi:10.5863/1551-6776-22.4.27628943823
  • Pettit RS, Neu N, Cies JJ, et al. Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. J Antimicrob Chemother. 2016;71(1):189–195. doi:10.1093/jac/dkv28926416780
  • Norrby SR. Neurotoxicity of carbapenem antibiotics: consequences for their use in bacterial meningitis. J Antimicrob Chemother. 2000;45(1):5–7. doi:10.1093/jac/45.1.510629006
  • Mesini A, Loy A, Losurdo G, et al. Uncommon occurrence of high piperacillin-tazobactam and meropenem plasma concentrations and concomitant absence of neurotoxicity in pediatrics. Minerva Anestesiol. 2018;84(9):1111–1112. doi:10.23736/S0375-9393.18.12600-929624028
  • Barco S, Bandettini R, Maffia A, et al. Quantification of piperacillin, tazobactam, meropenem, ceftazidime, and linezolid in human plasma by liquid chromatography/tandem mass spectrometry. J Chemother. 2015;27(6):343–347. doi:10.1179/1973947814Y.000000020925178412
  • Barco S, Castagnola E, Moscatelli A, Rudge J, Tripodi G, Cangemi G. Volumetric adsorptive microsampling-liquid chromatography tandem mass spectrometry assay for the simultaneous quantification of four antibiotics in human blood: method development, validation and comparison with dried blood spot. J Pharm Biomed Anal. 2017;145:704–710. doi:10.1016/j.jpba.2017.07.03328806566
  • Barco S, Risso FM, Bruschettini M, et al. A validated LC-MS/MS method for the quantification of piperacillin/tazobactam on dried blood spot. Bioanalysis. 2014;6(21):2795–2802. doi:10.4155/bio.14.20525486227
  • Cangemi G, Barco S, Castagnola E, Tripodi G, Favata F, D’Avolio A. Development and validation of UHPLC-MS/MS methods for the quantification of colistin in plasma and dried plasma spots. J Pharm Biomed Anal. 2016;129::551–557. doi:10.1016/j.jpba.2016.08.002
  • Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the surgical infection society and the infectious diseases society of America. Clin Infect Dis. 2010;50(2):133–164. doi:10.1086/64955420034345
  • Zobell JT, Young DC, Waters CD, et al. Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: I. aztreonam and carbapenems. Pediatr Pulmonol. 2012;47(12):1147–1158. doi:10.1002/ppul.2265522911974
  • WHO: 21st Expert Committee on the Selection and Use of Essential Medicines [homepage on the Internet]. Geneva:World Health Organization. Available from: https://www.who.int/selection_medicines/committees/expert/21/en. Accessed May 31, 2020.
  • Tygacil® (tygeciclin) (powder for infusion) [prescribing information]. European Medicines Agency; 2018.