139
Views
13
CrossRef citations to date
0
Altmetric
Original Research

Development of a multiple cross displacement amplification combined with nanoparticles-based biosensor assay to detect Neisseria meningitidis

, , , , &
Pages 2077-2087 | Published online: 15 Jul 2019

References

  • Batista RS, Gomes AP, Dutra Gazineo JL, et al. Meningococcal disease, a clinical and epidemiological review. Asian Pac J Trop Med. 2017;10(11):1019–1029. doi:10.1016/j.vaccine.2016.02.01429203096
  • Benard S, Wright C, Voisine J, Olivier CW, Gaudelus J. Lifetime cost of meningococcal disease in France: scenarios of severe meningitis and septicemia with purpura fulminans. J Infect Public Health. 2016;9(3):339–347. doi:10.1016/j.jiph.2015.10.01626688376
  • Christensen H, Hickman M, Edmunds WJ, Trotter CL. Introducing vaccination against serogroup B meningococcal disease: an economic and mathematical modelling study of potential impact. Vaccine. 2013;31(23):2638–2646. doi:10.1016/j.vaccine.2013.03.03423566946
  • Lee D, Kim EJ, Kilgore PE, et al. Clinical evaluation of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Neisseria meningitidis in cerebrospinal fluid. PLoS One. 2015;10(4):e0122922.25853422
  • Zhu H, Wang Q, Wen L, et al. Development of a multiplex PCR assay for detection and genogrouping of Neisseria meningitidis. J Clin Microbiol. 2012;50(1):46–51.22090406
  • van Deuren M, Meis JF. Meningococcal disease. N Engl J Med. 2001;345(9):699.
  • Baethgen LF, Weidlich L, Moraes C, et al. Epidemiology of meningococcal disease in southern Brazil from 1995 to 2003, and molecular characterization of Neisseria meningitidis using multilocus sequence typing. Trop Med Int Health. 2008;13(1):31–40.
  • Lee D, Kim EJ, Kilgore PE, et al. A novel loop-mediated isothermal amplification assay for serogroup identification of Neisseria meningitidis in cerebrospinal fluid. Front Microbiol. 2015;6:1548.26793181
  • Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet. 2007;369(9580):2196–2210.17604802
  • Stephens DS. Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis. Vaccine. 2009;27(Suppl 2):B71–B77. doi:10.1016/j.vaccine.2009.04.07019477055
  • Harrison OB, Claus H, Jiang Y, et al. Description and nomenclature of Neisseria meningitidis capsule locus. Emerg Infect Dis. 2013;19(4):566–573. doi:10.3201/eid1904.11179923628376
  • Boisier P, Nicolas P, Djibo S, et al. Meningococcal meningitis: unprecedented incidence of serogroup X-related cases in 2006 in Niger. Clin Infect Dis. 2007;44(5):657–663. doi:10.1086/51164617278055
  • Harrison LH, Trotter CL, Ramsay ME. Global epidemiology of meningococcal disease. Vaccine. 2009;27(Suppl 2):B51–B63. doi:10.1016/j.vaccine.2009.04.06319477562
  • Kim SA, Kim DW, Dong BQ, Kim JS, Anh DD, Kilgore PE. An expanded age range for meningococcal meningitis: molecular diagnostic evidence from population-based surveillance in Asia. BMC Infect Dis. 2012;12:310. doi:10.1186/1471-2334-12-16623164061
  • Chiavetta L, Chavez E, Ruzic A, Mollerach M, Regueira M. [Surveillance of Neisseria meningitidis in Argentina, 1993–2005: distribution of serogroups, serotypes and serosubtypes isolated from invasive disease]. Rev Argent Microbiol. 2007;39(1):21–27.17585655
  • ffgk Enhanced surveillance of epidemic meningococcal meningitis in Africa: a three-year experience. Releve Epidemiologique Hebd. 2005;80(37):313–320.
  • Mustapha MM, Marsh JW, Harrison LH. Global epidemiology of capsular group W meningococcal disease (1970–2015): multifocal emergence and persistence of hypervirulent sequence type (ST)-11 clonal complex. Vaccine. 2016;34(13):1515–1523. doi:10.1016/j.vaccine.2016.02.01426876439
  • MacNeil JR, Medah I, Koussoube D, et al. Neisseria meningitidis serogroup W, Burkina Faso, 2012. Emerg Infect Dis. 2014;20(3):394–399. doi:10.3201/eid2003.13140724571805
  • Xie O, Pollard AJ, Mueller JE, Norheim G. Emergence of serogroup X meningococcal disease in Africa: need for a vaccine. Vaccine. 2013;31(27):2852–2861. doi:10.1016/j.vaccine.2013.04.03623623866
  • Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ, Kaczmarski EB. Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol. 2001;39(4):1553–1558. doi:10.1128/JCM.39.4.1553-1558.200111283086
  • Chanteau S, Dartevelle S, Mahamane AE, Djibo S, Boisier P, Nato F. New rapid diagnostic tests for Neisseria meningitidis serogroups A, W135, C, and Y. PLoS Med. 2006;3(9):e337. doi:10.1371/journal.pmed.003033716953658
  • Borrow R, Findlow J, Gray S, Taylor S, Kaczmarski E. Safe laboratory handling of Neisseria meningitidis. J Infect. 2014;68(4):305–312. doi:10.1016/j.jinf.2014.01.00324440738
  • Campbell H, Borrow R, Salisbury D, Miller E. Meningococcal C conjugate vaccine: the experience in England and Wales. Vaccine. 2009;27(Suppl 2):B20–B29. doi:10.1016/j.vaccine.2009.04.06719477053
  • Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–1098. doi:10.1016/S1473-3099(13)70318-924252483
  • Taha MK, Alonso JM, Cafferkey M, et al. Interlaboratory comparison of PCR-based identification and genogrouping of Neisseria meningitidis. J Clin Microbiol. 2005;43(1):144–149. doi:10.1128/JCM.43.1.144-149.200515634963
  • Fraisier C, Stor R, Tenebray B, Sanson Y, Nicolas P. Use of a new single multiplex PCR-based assay for direct simultaneous characterization of six Neisseria meningitidis serogroups. J Clin Microbiol. 2009;47(8):2662–2666. doi:10.1128/JCM.02415-0819553584
  • Doyle CJ, Jennison AV. Corrigendum to “Novel real-time polymerase chain reactions for serogroup specific gene detection of Neisseria meningitidis serogroups B, C, W-135 and Y” [J. Microbiol. Meth. 94 (2)(2013) 83–85]. J Microbiol Methods. 2016;130:198. doi:10.1016/j.mimet.2016.09.00427596693
  • McKenna JP, Fairley DJ, Shields MD, et al. Development and clinical validation of a loop-mediated isothermal amplification method for the rapid detection of Neisseria meningitidis. Diagn Microbiol Infect Dis. 2011;69(2):137–144. doi:10.1016/j.diagmicrobio.2010.10.00821251556
  • Wang Y, Zhang L, Liu D, et al. Multiplex, rapid, and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification. Front Microbiol. 2016;7:753.27242766
  • Wang Y, Li H, Luo L, Xu J, Ye C. Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Listeria monocytogenes. Int J Nanomedicine. 2017;12:473–486. doi:10.2147/IJN.S12362528138243
  • Wang Y, Li H, Li D, Li K, Xu J, Ye C. Multiple cross displacement amplification combined with gold nanoparticle-based lateral flow biosensor for detection of Vibrio parahaemolyticus. Front Microbiol. 2016;7:2047.28066368
  • Wang Y, Li H, Zhang L, Zhang J, Xu J, Ye C. Nanoparticle-based lateral flow biosensor combined with multiple cross displacement amplification for rapid, visual and sensitive detection of Vibrio cholerae. FEMS Microbiol Lett. 2017;364(23). doi:10.1093/femsle/fnx051
  • Wang Y, Yan W, Xu J, Ye C. Rapid, sensitive and reliable detection of Klebsiella pneumoniae by label-free multiple cross displacement amplification coupled with nanoparticles-based biosensor. J Microbiol Methods. 2018;149:80–88. doi:10.1016/j.mimet.2018.05.00329730325
  • Wang Y, Wang Y, Ma AJ, et al. Rapid and sensitive isothermal detection of nucleic-acid sequence by multiple cross displacement amplification. Sci Rep. 2015;5:11902. doi:10.1038/srep1190226154567
  • Wang Y, Li H, Wang Y, Xu H, Xu J, Ye C. Antarctic thermolabile uracil-DNA-glycosylase-supplemented multiple cross displacement amplification using a label-based nanoparticle lateral flow biosensor for the simultaneous detection of nucleic acid sequences and elimination of carryover contamination. Nano Res. 2018;11(5):2632–2647. doi:10.1007/s12274-017-1893-z
  • Wang Y, Wang Y, Wang H, Xu J, Ye C. A label-free technique for accurate detection of nucleic acid-based self-avoiding molecular recognition systems supplemented multiple cross-displacement amplification and nanoparticles based biosensor. Artif Cells Nanomed Biotechnol. 2018;46(8):1671–1684.29037087
  • Wang Y, Lan R, Xu H, et al. Multiple endonuclease restriction real-time loop-mediated isothermal amplification: a novel analytically rapid, sensitive, multiplex loop-mediated isothermal amplification detection technique. J Mol Diagn. 2015;17(4):392–401. doi:10.1016/j.jmoldx.2015.03.00226094089