390
Views
27
CrossRef citations to date
0
Altmetric
Original Research

The Anti-Mycobacterial Activity Of Ag, ZnO, And Ag- ZnO Nanoparticles Against MDR- And XDR-Mycobacterium tuberculosis

, , , , , , & show all
Pages 3425-3435 | Published online: 04 Nov 2019

References

  • Nasiri MJ, Imani Fooladi AA, Dabiri H, et al. Primary ethambutol resistance among Iranian pulmonary tuberculosis patients: a systematic review. Ther Adv Infect Dis. 2016;3(5):133–138. doi:10.1177/204993611666196228149517
  • Mirnejad R, Asadi A, Khoshnood S, et al. Clofazimine: a useful antibiotic for drug-resistant tuberculosis. Biomed Pharmacother. 2018;105:1353–1359. doi:10.1016/j.biopha.2018.06.02330021373
  • Khoshnood S, Heidary M, Haeili M, et al. Novel vaccine candidates against Mycobacterium tuberculosis. Int J Biol Macromol. 2018. doi:10.1016/j.ijbiomac.2018.08.037
  • Gandhi NR, Nunn P, Dheda K, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet. 2010;375(9728):1830–1843. doi:10.1016/S0140-6736(10)60410-220488523
  • Dias HMY, Pai M, Raviglione MC. Ending tuberculosis in India: a political challenge & an opportunity. Indian J Med Res. 2018;147(3):217. doi:10.4103/ijmr.IJMR_1375_1629923507
  • Yaghini E, Pirker KF, Kay CW, Seifalian AM, MacRobert AJ. Quantification of reactive oxygen species generation by photoexcitation of pegylated quantum dots. Small. 2014;10(24):5106–5115. doi:10.1002/smll.20140120925164061
  • Osanloo M, Amini SM, Sedaghat MM, Amani A. Larvicidal activity of chemically synthesized silver nanoparticles against anopheles stephensi. J Pharm Negat Results. 2018;10(1):2.
  • Jafari A, Ghane M, Sarabi M, Siyavoshifar F. Synthesis and antibacterial properties of zinc oxide combined with copper oxide nanocrystals. Orient J Chem. 2011;27(3):811.
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomed. 2007;3(1):95–101. doi:10.1016/j.nano.2006.12.001
  • Fan W, Sun Q, Li Y, Tay FR, Fan B. Synergistic mechanism of Ag+–zn 2+ in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection. J Nanobiotechnology. 2018;16(1):10. doi:10.1186/s12951-018-0336-329386060
  • Amiri S, Yousefi-Ahmadipour A, Hosseini M-J, et al. Maternal exposure to silver nanoparticles are associated with behavioral abnormalities in adulthood: role of mitochondria and innate immunity in developmental toxicity. Neurotoxicology. 2018;66:66–77. doi:10.1016/j.neuro.2018.03.00629550386
  • Ma L, Zou X, Chen W. A new X-ray activated nanoparticle photosensitizer for cancer treatment. J Biomed Nanotechnol. 2014;10(8):1501–1508. doi:10.1166/jbn.2014.195425016650
  • Nasiri MJ, Rezaei F, Zamani S, et al. Drug resistance pattern of Mycobacterium tuberculosis isolates from patients of five provinces of Iran. Asian Pac J Trop Med. 2014;7(3):193–196. doi:10.1016/S1995-7645(14)60019-524507638
  • Torkaman MRA, Nasiri MJ, FaRnia P, Shahhosseiny MH, Mozafari M, Velayati AA. Estimation of recent transmission of Mycobacterium tuberculosis strains among Iranian and Afghan immigrants: a cluster-based study. J Clin Diagn Res. 2014;8(9):DC05. doi:10.7860/JCDR/2014/6788.3956
  • Narayanan S, Parandaman V, Narayanan P, et al. Evaluation of PCR using TRC4 and IS6110 primers in detection of tuberculous meningitis. J Clin Microbiol. 2001;39(5):2006–2008. doi:10.1128/JCM.39.5.2006-2008.200111326036
  • Farzam B, Fooladi AAI, Izadi M, Hossaini HM, Feizabadi MM. Comparison of cyp141 and IS6110 for detection of Mycobacterium tuberculosis from clinical specimens by PCR. J Infect Public Health. 2015;8(1):32–36. doi:10.1016/j.jiph.2014.08.00525304426
  • Reller LB, Weinstein MP, Woods GL. Susceptibility testing for mycobacteria. Clin Infect Dis. 2000;31(5):1209–1215. doi:10.1086/31744111073754
  • Jafari A, Mosavari N, Movahedzadeh F, et al. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines. Microb Pathog. 2017;110:335–344. doi:10.1016/j.micpath.2017.07.01028710015
  • Ghaemi B, Mashinchian O, Mousavi T, Karimi R, Kharrazi S, Amani A. Harnessing the cancer radiation therapy by lanthanide-doped zinc oxide based theranostic nanoparticles. ACS Appl Mater Interfaces. 2016;8(5):3123–3134. doi:10.1021/acsami.5b1005626771200
  • Thatoi P, Kerry RG, Gouda S, et al. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol. 2016;163:311–318. doi:10.1016/j.jphotobiol.2016.07.029
  • Jafari A, Jafari Nodooshan S, Safarkar R, et al. Toxicity effects of AgZnO nanoparticles and rifampicin on Mycobacterium tuberculosis into the macrophage. J Basic Microbiol. 2018;58(1):41–51. doi:10.1002/jobm.20170028929105782
  • Franzblau SG, Witzig RS, McLaughlin JC, et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol. 1998;36(2):362–366.9466742
  • Lopes LQS, de Oliveira PSB, de Souza Filho WP, et al. Glycerol monolaurate nanocapsules for biomedical applications: in vitro toxicological studies. Naunyn-Schmiedeberg’s Arch Pharmacol. 2019;392(9):1–10.
  • Nachega JB, Chaisson RE. Tuberculosis drug resistance: a global threat. Clin Infect Dis. 2003;36(Supplement_1):S24–S30. doi:10.1086/34465712516027
  • Zignol M, Dean AS, Falzon D, et al. Twenty years of global surveillance of antituberculosis-drug resistance. N Engl J Med. 2016;375(11):1081–1089. doi:10.1056/NEJMsr151243827626523
  • Yang S-H, Zhan P, Sun M, Zhang Y-P, Ma N-L. Perfusing chemotherapy by percutaneous lung puncture in the treatment of extensive drug resistant pulmonary tuberculosis. J Thorac Dis. 2012;4(6):624.23205288
  • Yun’an Qing LC, Li R, Liu G, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018;13:3311. doi:10.2147/IJN.S17762729892194
  • Tiwari V, Mishra N, Gadani K, Solanki PS, Shah N, Tiwari M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front Microbiol. 2018;9:1218. doi:10.3389/fmicb.2018.0121829928271
  • Amini SM, Kharrazi S, Rezayat SM, Gilani K. Radiofrequency electric field hyperthermia with gold nanostructures: role of particle shape and surface chemistry. Artif Cells Nanomed Biotechnol. 2018;46(7):1452–1462. doi:10.1080/21691401.2017.137365628891351
  • Zarchi AAK, Amini SM, Salimi A, Kharazi S. Synthesis and characterisation of liposomal doxorubicin with loaded gold nanoparticles. IET Nanobiotechnol. 2018;12(6):846–849. doi:10.1049/iet-nbt.2017.032130104461
  • Amini SM, Kharrazi S, Jaafari MR. Radio frequency hyperthermia of cancerous cells with gold nanoclusters: an in vitro investigation. Gold Bull. 2017;50(1):43–50. doi:10.1007/s13404-016-0192-6
  • Jafari A, Mosavi T, Mosavari N, et al. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells. Int J Mycobacteriol. 2016;5:S181–S183. doi:10.1016/j.ijmyco.2016.09.01128043541
  • Salomoni R, Léo P, Montemor A, Rinaldi B, Rodrigues M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl. 2017;10:115. doi:10.2147/NSA.S13341528721025
  • Banu A, Rathod V. Biosynthesis of monodispersed silver nanoparticles and their activity against Mycobacterium tuberculosis. J Nanomed Biotherapeut Discov. 2013;3(110):2. doi:10.4172/2155-983X.1000110
  • Yusof NAA, Zain NM, Pauzi N. Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against gram-positive and gram-negative bacteria. Int J Biol Macromol. 2019;124:1132–1136. doi:10.1016/j.ijbiomac.2018.11.22830496864
  • Siddiqi KS, Ur Rahman A, Tajuddin HA. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. 2018;13(1):141. doi:10.1186/s11671-018-2532-329740719
  • Lanone S, Rogerieux F, Geys J, et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol. 2009;6(1):14. doi:10.1186/1743-8977-6-1419405955
  • Amini SM. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. Mater Sci Eng. 2019;109809. doi:10.1016/j.msec.2019.109809
  • Nasiri MJ, Haeili M, Ghazi M, et al. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front Microbiol. 2017;8:681. doi:10.3389/fmicb.2017.0068128487675