513
Views
22
CrossRef citations to date
0
Altmetric
Review

A Clinical Review and Critical Evaluation of Imipenem-Relebactam: Evidence to Date

ORCID Icon & ORCID Icon
Pages 4297-4308 | Published online: 25 Nov 2020

References

  • Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.); 2019.
  • Bogan C, Kaye KS, Chopra T, et al. Outcomes of carbapenem-resistant Enterobacteriaceae isolation: matched analysis. Am J Infect Control. 2014;42(6):612–620. doi:10.1016/j.ajic.2014.02.01324837111
  • Martin A, Fahrbach K, Zhao Q, Lodise T. Association between carbapenem resistance and mortality among adult, hospitalized patients with serious infections due to Enterobacteriaceae: results of a systematic literature review and meta-analysis. Open Forum Infect Dis. 2018;5(7). doi:10.1093/ofid/ofy150
  • Zhanel GG, Wiebe R, Dilay L, et al. Comparative review of the carbapenems. Drugs. 2007;67(7):1027–1052. doi:10.2165/00003495-200767070-0000617488146
  • Hirsch EB, Ledesma KR, Chang K-T, Schwartz MS, Motyl MR, Tam VH. In vitro activity of MK-7655, a novel β-lactamase inhibitor, in combination with imipenem against carbapenem-resistant gram-negative bacteria. Antimicrob Agents Chemother. 2012;56(7):3753–3757. doi:10.1128/AAC.05927-1122526311
  • Karlowsky JA, Lob SH, Kazmierczak KM, Young K, Motyl MR, Sahm DF. In vitro activity of imipenem-relebactam against clinical isolates of gram-negative bacilli isolated in hospital laboratories in the United States as part of the SMART 2016 program. Antimicrob Agents Chemother. 2018;62(7). doi:10.1128/AAC.00169-18
  • Karlowsky JA, Lob SH, Kazmierczak KM, et al. In vitro activity of imipenem/relebactam against gram-negative ESKAPE pathogens isolated in 17 European countries: 2015 SMART surveillance programme. J Antimicrob Chemother. 2018;73(7):1872–1879. doi:10.1093/jac/dky10729659861
  • Lob SH, Hackel MA, Kazmierczak KM, et al. In vitro activity of imipenem-relebactam against gram-negative ESKAPE pathogens isolated by clinical laboratories in the United States in 2015 (Results from the SMART global surveillance program). Antimicrob Agents Chemother. 2017;61(6). doi:10.1128/AAC.02209-16
  • Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother. 2018;62(10):e01076. doi:10.1128/AAC.01076-1830061284
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–1233. doi:10.1128/AAC.39.6.12117574506
  • Crass RL, Pai MP. Pharmacokinetics and pharmacodynamics of β-lactamase inhibitors. Pharmacotherapy. 2019;39(2):182–195. doi:10.1002/phar.221030589457
  • McLeod DC, Lyon JA. Imipenem/cilastatin: the first carbapenem antibiotic. Drug Intell Clin Pharm. 1985;19(12):894–899. doi:10.1177/106002808501901202
  • Recarbrio (imipenem/cilastatin/relebactam) [package insert]. Whitehouse Station, NJ: Merck & Co Inc; 7 2019.
  • Zhanel GG, Simor AE, Vercaigne L, Mandell L. Imipenem and meropenem: comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. Can J Infect Dis. 1998;9(4):215–228.22346545
  • Tooke CL, Hinchliffe P, Lang PA, et al. Molecular basis of class A β-lactamase inhibition by relebactam. Antimicrob Agents Chemother. 2019;63(10):e00564. doi:10.1128/AAC.00564-1931383664
  • Papp-Wallace KM, Barnes MD, Alsop J, et al. Relebactam is a potent inhibitor of the KPC-2 β-lactamase and restores imipenem susceptibility in KPC-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62(6). doi:10.1128/AAC.00174-18
  • Lob SH, Karlowsky JA, Young K, et al. In vitro activity of imipenem-relebactam against resistant phenotypes of Enterobacteriaceae and Pseudomonas aeruginosa isolated from intraabdominal and urinary tract infection samples - SMART surveillance Europe 2015–2017. J Med Microbiol. 2020;69(2):207–217. doi:10.1099/jmm.0.00114231976856
  • El Hafi B, Rasheed SS, Abou Fayad AG, Araj GF, Matar GM. Evaluating the efficacies of carbapenem/β-lactamase inhibitors against carbapenem-resistant gram-negative bacteria in vitro and in vivo. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.00933.
  • Gomez-Simmonds A, Stump S, Giddins MJ, Annavajhala MK, Uhlemann A-C. Clonal background, resistance gene profile, and porin gene mutations modulate in vitro susceptibility to imipenem-relebactam in diverse Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62(8). doi:10.1128/AAC.00573-18
  • Haidar G, Clancy CJ, Chen L, et al. Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61(9). doi:10.1128/AAC.00642-17
  • Lapuebla A, Abdallah M, Olafisoye O, et al. Activity of imipenem with relebactam against gram-negative pathogens from New York City. Antimicrob Agents Chemother. 2015;59(8):5029–5031. doi:10.1128/AAC.00830-1526014931
  • Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;dkt178. doi:10.1093/jac/dkt178
  • Schmidt-Malan SM, Mishra AJ, Mushtaq A, Brinkman CL, Patel R. In vitro activity of imipenem-relebactam and ceftolozane-tazobactam against resistant gram-negative bacilli. Antimicrob Agents Chemother. 2018;62(8). doi:10.1128/AAC.00533-18
  • Biagi M, Shajee A, Vialichka A, Jurkovic M, Tan X, Wenzler E. Activity of imipenem-relebactam and meropenem-vaborbactam against carbapenem-resistant, SME-producing serratia marcescens. Antimicrob Agents Chemother. 2020;64(4). doi:10.1128/AAC.02255-19
  • Johnston BD, Thuras P, Porter SB, et al. Activity of imipenem/relebactam against carbapenem-resistant Escherichia coli isolates from the United States in relation to clonal background, resistance genes, co-resistance, and region. Antimicrob Agents Chemother. 2020. doi:10.1128/AAC.02408-19
  • Kulengowski B, Burgess DS. Imipenem/relebactam activity compared to other antimicrobials against non-MBL-producing carbapenem-resistant Enterobacteriaceae from an academic medical center. Pathog Dis. 2019;77(4):ftz040. doi:10.1093/femspd/ftz04031365075
  • Carpenter J, Neidig N, Campbell A, et al. Activity of imipenem/relebactam against carbapenemase-producing Enterobacteriaceae with high colistin resistance. J Antimicrob Chemother. 2019;74(11):3260–3263. doi:10.1093/jac/dkz35431430370
  • Balabanian G, Rose M, Manning N, Landman D, Quale J. Effect of porins and blaKPC expression on activity of imipenem with relebactam in Klebsiella pneumoniae: can antibiotic combinations overcome resistance? Microb Drug Resist. 2018;24(7):877–881. doi:10.1089/mdr.2018.006529782237
  • Senchyna F, Gaur RL, Sandlund J, et al. Diversity of resistance mechanisms in carbapenem-resistant Enterobacteriaceae at a health care system in Northern California, from 2013 to 2016. Diagn Microbiol Infect Dis. 2019;93(3):250–257. doi:10.1016/j.diagmicrobio.2018.10.00430482638
  • Kahlmeter G, Giske CG, Kirn TJ, Sharp SE. Point-counterpoint: differences between the European committee on antimicrobial susceptibility testing and clinical and laboratory standards institute recommendations for reporting antimicrobial susceptibility results. Caliendo AM ed. J Clin Microbiol. 2019;57(9):e01129. doi:10.1128/JCM.01129-1931315957
  • Canver MC, Satlin MJ, Westblade LF, et al. Activity of imipenem-relebactam and comparator agents against genetically characterized isolates of carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2019;63(9). doi:10.1128/AAC.00672-19
  • Galani I, Nafplioti K, Adamou P, Karaiskos I, Giamarellou H, Antoniadou A. In vitro activity of imipenem-relebactam against non-MBL carbapenemase-producing Klebsiella pneumoniae isolated in Greek hospitals in 2015–2016. Eur J Clin Microbiol Infect Dis. 2019;38(6):1143–1150. doi:10.1007/s10096-019-03517-y30825054
  • Barnes MD, Bethel CR, Alsop J, et al. Inactivation of the pseudomonas-derived cephalosporinase-3 (PDC-3) by relebactam. Antimicrob Agents Chemother. 2018;62(5):e02406–17. doi:10.1128/AAC.02406-1729530851
  • Horner C, Mushtaq S, Livermore DM, et al. Potentiation of imipenem by relebactam for Pseudomonas aeruginosa from bacteraemia and respiratory infections. J Antimicrob Chemother. 2019;74(7):1940–1944. doi:10.1093/jac/dkz13331032858
  • Asempa TE, Nicolau DP, Kuti JL. In vitro activity of imipenem-relebactam alone or in combination with amikacin or colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63(9). doi:10.1128/AAC.00997-19
  • Asempa TE, Nicolau DP, Kuti JL. Carbapenem-nonsusceptible Pseudomonas aeruginosa isolates from intensive care units in the United States: a potential role for new β-lactam combination agents. J Clin Microbiol. 2019;57(8). doi:10.1128/JCM.00535-19
  • Fraile-Ribot PA, Zamorano L, Orellana R, et al. Activity of imipenem-relebactam against a large collection of Pseudomonas aeruginosa clinical isolates and isogenic β-lactam-resistant mutants. Antimicrob Agents Chemother. 2020;64(2). doi:10.1128/AAC.02165-19
  • Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. CMR. 2010;23(1):160–201. doi:10.1128/CMR.00037-09
  • Snydman DR, Jacobus NV, McDermott LA. In vitro evaluation of the activity of imipenem-relebactam against 451 recent clinical isolates of bacteroides group and related species. Antimicrob Agents Chemother. 2016;60(10):6393–6397. doi:10.1128/AAC.01125-1627480858
  • Goldstein EJC, Citron DM, Tyrrell KL, Leoncio E, Merriam CV. Comparative in vitro activities of relebactam, imipenem, the combination of the two, and six comparator antimicrobial agents against 432 strains of anaerobic organisms, including imipenem-resistant strains. Antimicrob Agents Chemother. 2018;62(2). doi:10.1128/AAC.01992-17
  • Rhee EG, Rizk ML, Calder N, et al. Pharmacokinetics, safety, and tolerability of single and multiple doses of relebactam, a-lactamase inhibitor, in combination with imipenem and cilastatin in healthy participants. Antimicrob Agents Chemother. 2018;62(9):16.
  • Rizk ML, Rhee EG, Jumes PA, et al. Intrapulmonary pharmacokinetics of relebactam, a novel β-lactamase inhibitor, dosed in combination with imipenem-cilastatin in healthy subjects. Antimicrob Agents Chemother. 2018;62(3). doi:10.1128/AAC.01411-17
  • Bhagunde P, Patel P, Lala M, et al. Population pharmacokinetic analysis for imipenem–relebactam in healthy volunteers and patients with bacterial infections. CPT Pharmacometrics Syst Pharmacol. 2019;8(10):748–758. doi:10.1002/psp4.1246231508899
  • Chan G, Houle R, Lin M, et al. Role of transporters in the disposition of a novel β-lactamase inhibitor: relebactam (MK-7655). J Antimicrob Chemother. 2019;74(7):1894–1903. doi:10.1093/jac/dkz10130891606
  • Lucasti C, Vasile L, Sandesc D, et al. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016;60(10):6234–6243. doi:10.1128/AAC.00633-1627503659
  • Sims M, Mariyanovski V, McLeroth P, et al. Prospective, randomized, double-blind, phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother. 2017;72(9):2616–2626. doi:10.1093/jac/dkx13928575389
  • Motsch J, Murta de Oliveira C, Stus V, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2019. doi:10.1093/cid/ciz530
  • Roquilly A, Titov I, Rodriguez Gonzalez D, et al. Outcomes in ventilated patients with hospital-acquired/ventilator-associated bacterial pneumonia (HABP/VABP) treated with imipenem/cilastatin/relebactam vs piperacillin/tazobactam: subgroup analysis of the RESTORE-IMI 2 randomized, controlled trial. Poster presented at the: ECCMID; 4 2020; Paris, France.
  • Titov I, Wunderink R, Roquilly A, et al. RESTORE-IMI 2: randomized, double-blind, phase 3 trial comparing efficacy and safety of imipenem/cilastatin/relebactam vs piperacillin/tazobactam in adult patients with hospital-acquired or ventilator-associated bacterial pneumonia (HABP/VABP). Poster presented at the: ECCMID; 4 2020; Paris, France.
  • Mori H, Takahashi K, Mizutani T. Interaction between valproic acid and carbapenem antibiotics. Drug Metab Rev. 2007;39(4):647–657. doi:10.1080/0360253070169034118058328
  • Gallagher JC, Satlin MJ, Elabor A, et al. Ceftolozane-tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: a multicenter study. Open Forum Infect Dis. 2018;5(11):ofy280. doi:10.1093/ofid/ofy28030488041
  • Tamma PD, Beisken S, Bergman Y, et al. Modifiable risk factors for the emergence of ceftolozane-tazobactam resistance. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa1306
  • Zhanel GG, Lawrence CK, Adam H, et al. Imipenem–relebactam and meropenem–vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018;78(1):65–98. doi:10.1007/s40265-017-0851-929230684
  • Lapuebla A, Abdallah M, Olafisoye O, et al. Activity of meropenem combined with RPX7009, a novel β-lactamase inhibitor, against gram-negative clinical isolates in New York City. Antimicrob Agents Chemother. 2015;59(8):4856–4860. doi:10.1128/AAC.00843-1526033723
  • Shields RK, Doi Y. Aztreonam combination therapy: an answer to metallo-β-lactamase–producing gram-negative bacteria? Clin Infect Dis. 2019;ciz1159. doi:10.1093/cid/ciz1159
  • Shaw E, Rombauts A, Tubau F, et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother. 2018;73(4):1104–1106. doi:10.1093/jac/dkx49629272413
  • Marshall S, Hujer AM, Rojas LJ, et al. Can ceftazidime-avibactam and aztreonam overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother. 2017;61(4):e02243–16. doi:10.1128/AAC.02243-1628167541
  • Vabomere (meropenem and vaborbactam) [package insert]. Lincolnshire, IL: Melinta Therapeutics Inc; 2017.
  • Vena A, Castaldo N, Bassetti M. The role of new β-lactamase inhibitors in gram-negative infections. Curr Opin Infect Dis. 2019;32(6):638–646. doi:10.1097/QCO.000000000000060031577557
  • Wang X, Zhao C, Wang Q, et al. In vitro activity of the novel β-lactamase inhibitor taniborbactam (VNRX-5133), in combination with cefepime or meropenem, against MDR gram-negative bacterial isolates from China. J Antimicrob Chemother. 2020. doi:10.1093/jac/dkaa053
  • Hamrick JC, Docquier J-D, Uehara T, et al. VNRX-5133 (taniborbactam), a broad-spectrum inhibitor of serine- and metallo-β-lactamases, restores activity of cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2020;64(3). doi:10.1128/AAC.01963-19
  • Tselepis L, Langley GW, Aboklaish AF, et al. In vitro efficacy of imipenem-relebactam and cefepime-AAI101 against a global collection of ESBL-positive and carbapenemase-producing Enterobacteriaceae. Int J Antimicrob Agents. 2020;56(1):105925. doi:10.1016/j.ijantimicag.2020.10592532084512
  • Lomovskaya O, Nelson K, Rubio-Aparicio D, Tsivkovski R, Sun D, Dudley MN. Impact of intrinsic resistance mechanisms on potency of QPX7728, a new ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases in Enterobacteriaceae, pseudomonas aeruginosa, and acinetobacter baumannii. Antimicrob Agents Chemother. 2020;64(6). doi:10.1128/AAC.00552-20
  • Tsivkovski R, Totrov M, Lomovskaya O. Biochemical characterization of QPX7728, a new ultra-broad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases. Antimicrob Agents Chemother. 2020;64(6). doi:10.1128/AAC.00130-20