183
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Transcriptome Analysis Reveals the Resistance Mechanism of Pseudomonas aeruginosa to Tachyplesin I

, , , &
Pages 155-169 | Published online: 16 Jan 2020

References

  • Overhag J, Strehmel J, Strempel N. Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections. Curr Pharm Des. 2015;21(1):66–84.
  • Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014;62:32–37. doi:10.1016/j.peptides.2014.09.02125285879
  • Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Update. 2016;26:43–57. doi:10.1016/j.drup.2016.04.002
  • Nuri R, Shprung T, Shai Y. Defensive remodeling: how bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Biochim Biophys Acta Biomembr. 2015;1848(11):3089–3100. doi:10.1016/j.bbamem.2015.05.022
  • Han ML, Zhu Y, Creek DJ, et al. Alterations of metabolic and lipid profiles in polymyxin-resistant. Pseudomonas Aeruginosa. Antimicrob Agents Chemother. 2018;62(6):e02656–17.29632014
  • Lee JY, Park YK, Chung ES, Na IY, Ko KS. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa. Sci Rep. 2016;6:25543. doi:10.1038/srep2554327150578
  • Moskowitz SM, Brannon MK, Dasgupta N, et al. PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2012;56(2):1019–1030. doi:10.1128/AAC.05829-1122106224
  • McPhee JB, Bains M, Winsor G, et al. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol. 2006;188:3995–4006. doi:10.1128/JB.00053-0616707691
  • Fernández L, Jenssen H, Bains M, Wiegand I, Gooderham WJ, Hancock RE. The two-component system cprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of parRS. Antimicrob Agents Chemother. 2012;56(12):6212–6222. doi:10.1128/AAC.01530-1223006746
  • Nakamura T, Furunaka H, Miyata T, Tokunaga MT, Iwanaga S, Shimonishi Y. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus) isolation and chemical structure. J Biol Chem. 1988;263:16709–16713.3141410
  • Li X, Dai JG, Tang YJ, Li LL, Jin G. Quantitative proteomic profiling of proteomic profiling of tachyplesin I targets in U251 gliomaspheres. Mar Drugs. 2017;15(1):20–25. doi:10.3390/md15010020
  • Xie HW, Wei J, Qin Q. Antiviral function of tachyplesin I against iridovirus and nodavirus. Fish Shellfish Immun. 2016;58:96–102. doi:10.1016/j.fsi.2016.09.015
  • Yu G, Z H L, Xin F, et al. Expression of recombinant human lysozyme-tachyplesin I (hLYZ-TP I) in Pichia pastoris and analysis of antibacterial activity. Biomed Environ Sci. 2013;26(4):319–322. doi:10.3967/0895-3988.2013.04.01223534474
  • Hong J, Hu JY, Ke F. Experimental induction of bacterial resistance to the antimicrobial peptide tachyplesin I and investigation of the resistance mechanisms. Antimicrob Agents Chemother. 2016;60(10):6067–6075. doi:10.1128/AAC.00640-1627480861
  • Hong J, Hu JY, Liu K, et al. Characteristics and resistance of tachyplesin-I resistance in Pseudomonas Aeruginosa. Acta Microbiol Sinica. 2018;58(8):1–12. doi:10.13343/j.cnki.wsxb.20170540
  • Li M, Lai YP, Villaruz AE, Cha DJ, Sturdevant DE, Otto M. Gram-positive three-component antimicrobial peptide-sensing system. PNAS. 2007;104(22):9469–9474. doi:10.1073/pnas.070215910417517597
  • Lei R, Ye K, Gu Z, Sun X. Diminishing returns in next-generation sequencing (NGS) transcriptome data. Gene. 2015;557:82–87. doi:10.1016/j.gene.2014.12.01325497830
  • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi:10.1186/gb-2009-10-3-r2519261174
  • Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26:136–138. doi:10.1093/bioinformatics/btp61219855105
  • Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–36. doi:10.1093/nar/28.1.3310592175
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–29. doi:10.1038/7555610802651
  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D277–D280. doi:10.1093/nar/gkh06314681412
  • Jia B, Raphenya AR, Alcock B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–573. doi:10.1093/nar/gkw100427789705
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi:10.1006/meth.2001.126211846609
  • Wang Z, Jiuzhou C. Influence of lipid A acylation pattern on membrane permeability and innate immune stimulation. Mar Drugs. 2013;11(9):3197–3208. doi:10.3390/md1109319724065161
  • Yehia HM, Hassanein WA, Ibraheim SM. Studies on molecular characterizations of the outer membrane proteins, lipids profile, and exopolysaccharides of antibiotic resistant strain Pseudomonas aeruginosa. Biomed Res Int. 2015;7. doi:10.1155/2015/651464
  • Robasky K, Lewis NE, Church GM. The role of replicates for error mitigation in next-generation sequencing. Nat Rev Genet. 2014;15:56–62. doi:10.1038/nrg365524322726
  • Band V, Weiss D. Mechanisms of antimicrobial peptide resistance in Gram-negative bacteria. Antibiotics. 2015;4(1):18–41. doi:10.3390/antibiotics401001825927010
  • Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25(4):661–681. doi:10.1128/CMR.00043-1223034325
  • Terzi HA, Kulah C, Atasoy AR, Ciftci IH. Investigation of OprD porin protein levels in carbapenem-resistant Pseudomonas aeruginosa isolates. Jundishapur J Microbiol. 2015;8(12):e25952.26865937
  • Arhin A, Boucher C. The outer membrane protein OprQ and adherence of Pseudomonas aeruginosa to human fibronectin. Microbiology. 2010;156(5):1415–1423. doi:10.1099/mic.0.033472-020093292
  • Pusic P, Tata M, Wolfinger MT, Sonnleitner E, Häussler S, Bläsi U. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa. Sci Rep. 2016;6:639621. doi:10.1038/srep39621
  • Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomole. 2018;8(1):1–24. doi:10.3390/biom8010004
  • Vernen F, Harvey PJ, Dias SA, et al. Characterization of tachyplesin peptides and their cyclized analogues to improve antimicrobial and anticancer properties. Int J Mol Sci. 2019;20:4184. doi:10.3390/ijms20174184