95
Views
4
CrossRef citations to date
0
Altmetric
Original Research

A Novel Transposon, Tn6518, Mediated Transfer of mcr-3 Variant in ESBL-Producing Aeromonas veronii

, , ORCID Icon, , &
Pages 893-899 | Published online: 25 Mar 2020

References

  • Yang S, He T, Sun J, et al. distinct antimicrobial resistance profiling of clinically important Aeromonas spp. in Southwest China: a seven-year surveillance study. Infect Drug Resist. 2019;12:2971–2978. doi:10.2147/IDR31571949
  • Castelo-Branco DS, Silva AL, Monteiro FO, et al. Aeromonas and Plesiomonas species from scarlet ibis (Eudocimus ruber) and their environment: monitoring antimicrobial susceptibility and virulence. Antonie Van Leeuwenhoek. 2017;110(1):33–43. doi:10.1007/s10482-016-0771-927885558
  • Dong HT, Techatanakitarnan C, Jindakittikul P, et al. Aeromonas jandaei and Aeromonas veronii caused disease and mortality in Nile tilapia, Oreochromis niloticus (L.). J Fish Dis. 2017;40:1395–1403.28383126
  • Dias C, Borges A, Saavedra MJ, et al. Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals. J Glob Antimicrob Resist. 2018;12:227–234. doi:10.1016/j.jgar.2017.09.01028951073
  • Li J, Nation RL, Turnidge JD, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006;6(9):589–601. doi:10.1016/S1473-3099(06)70580-116931410
  • Liu Y, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168. doi:10.1016/S1473-3099(15)00424-726603172
  • AbuOun M, Stubberfield EJ, Duggett NA, et al. mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother. 2017;72(10):2745–2749. doi:10.1093/jac/dkx28629091227
  • Ling Z, Yin W, Li H, et al. Chromosome-mediated mcr-3 variants in Aeromonas veronii from chicken meat. Antimicrob Agents Chemother. 2017;61(11):e01272–17.28848017
  • Roschanski N, Falgenhauer L, Grobbel M, et al. Retrospective survey of mcr-1 and mcr-2 in German pig-fattening farms, 2011–2012. Int J Antimicrob Agents. 2017;50(2):266–271. doi:10.1016/j.ijantimicag.2017.03.00728545990
  • Carroll LM, Gaballa A, Guldimann C, et al. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica Serotype Typhimurium Isolate. mBio. 2019;10(3):e00853–19.31064835
  • Wang X, Zhai W, Li J, et al. Presence of an mcr-3 variant in Aeromonas caviae, Proteus mirabilis, and Escherichia coli from one domestic duck. Antimicrob Agents Chemother. 2018;62(2):e02106–17.29203482
  • Shen Y, Xu C, Sun Q, et al. Prevalence and genetic analysis of mcr-3-positive Aeromonas species from humans, retail meat, and environmental water samples. Antimicrob Agents Chemother. 2018;62(9):e00404–18.29967026
  • Ma S, Sun C, Hulth A, et al. Mobile colistin resistance gene mcr-5 in porcine Aeromonas hydrophila. J Antimicrob Chemother. 2018;73(7):1777–1780. doi:10.1093/jac/dky11029659855
  • Eichhorn I, Feudi C, Wang Y, et al. Identification of novel variants of the colistin resistance gene mcr-3 in Aeromonas spp. from the national resistance monitoring programme GERM-Vet and from diagnostic submissions. J Antimicrob Chemother. 2018;73(5):1217–1221. doi:10.1093/jac/dkx53829394397
  • Kupfer M, Kuhnert P, Korczak BM, Peduzzi R, Demarta A Peduzzi R, Demarta A. Genetic relationships of Aeromonas strains inferred from 16S rRNA, gyrB and rpoB gene sequences. Int J Syst Evol Microbiol. 2006;56(Pt 12):2743–2751.
  • Shen Z, Wang Y, Shen Y, et al. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis. 2016;16(3):293. doi:10.1016/S1473-3099(16)00061-X26973308
  • Hu YY, Wang YL, Sun QL, et al. Colistin resistance gene mcr-1 in gut flora of children. Int J Antimicrob Agents. 2017;50(4):593–597. doi:10.1016/j.ijantimicag.2017.06.01128668691
  • He S, Hickman AB, Varani AM, et al. Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition. mBio. 2015;6(3):e762. doi:10.1128/mBio.00762-15
  • Olasz F, Farkas T, Kiss J, et al. Terminal inverted repeats of insertion sequence IS30 serve as targets for transposition. J Bacteriol. 1997;179(23):7551–7558. doi:10.1128/JB.179.23.7551-7558.19979393723
  • Yin W, Li H, Shen Y, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio. 2017;8:e543.
  • Wu CJ, Chuang YC, Lee MF, et al. Bacteremia due to extended-spectrum-β-lactamase-producing Aeromonas spp. at a Medical Center in Southern Taiwan. Antimicrob Agents Chemother. 2011;55(12):5813–5818. doi:10.1128/AAC.00634-1121968366
  • Li R, Xie M, Zhang J, et al. Genetic characterization of mcr-1-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant. J Antimicrob Chemother. 2017;72(2):393–401. doi:10.1093/jac/dkw41128073961
  • Gustafson CE, Chu S, Trust TJ. Mutagenesis of the paracrystalline surface protein array of Aeromonas salmonicida by endogenous insertion elements. J Mol Biol. 1994;237(4):452–463. doi:10.1006/jmbi.1994.12478151705
  • Batra P, Mathur P, Misra MC. Aeromonas spp.: an emerging nosocomial pathogen. J Lab Physicians. 2016;8(1):1–4. doi:10.4103/0974-2727.17623427013806