228
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Association Between the Phenotype and Genotype of Isoniazid Resistance Among Mycobacterium tuberculosis Isolates in Thailand

ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 627-634 | Published online: 24 Feb 2020

References

  • World Health Organization. Global Tuberculosis Report 2019. Geneva, Switzerland: WHO; 2019 Available from:https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1. Accessed 1028, 2019.
  • Zurcher K, Ballif M, Fenner L, et al. Drug susceptibility testing and mortality in patients treated for tuberculosis in high-burden countries: a multicentre cohort study. Lancet Infect Dis. 2019;19(3):298–307. doi:10.1016/S1473-3099(18)30673-X30744962
  • Reechaipichitkul W, Nateniyom S, Pungrassami P, eds. Guidelines for Programmatic Management of Drug-Resistant Tuberculosis. Bangkok, Thai: Bureau of Tuberculosis Department of Disease Control; 2015 Available from:https://www.tbthailand.org/download/DR-TB%20Proof%2023%20FINAL.pdf. Accessed 928, 2019.
  • Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect Genet Evol. 2016;45:476–492. doi:10.1016/j.meegid.2016.09.004
  • Lempens P, Meehan CJ, Vandelannoote K, et al. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci Rep. 2018;8(1):3246. doi:10.1038/s41598-018-21378-x29459669
  • Tseng ST, Tai CH, Li CR, Lin CF, Shi ZY. The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. J Microbiol Immunol Infect. 2015;48(3):249–255. doi:10.1016/j.jmii.2013.08.01824184004
  • Jabbar A, Phelan JE, de Sessions PF, et al. Whole genome sequencing of drug resistant Mycobacterium tuberculosis isolates from a high burden tuberculosis region of North West Pakistan. Sci Rep. 2019;9(1):14996. doi:10.1038/s41598-019-51562-631628383
  • Dantes R, Metcalfe J, Kim E, et al. Impact of isoniazid resistance-conferring mutations on the clinical presentation of isoniazid monoresistant tuberculosis. PLoS One. 2012;7(5):e37956. doi:10.1371/journal.pone.003795622649569
  • Vilcheze C, Jacobs WJ. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr. 2014;2(4):431–453. doi:10.1128/microbiolspec.MGM2-0014-2013
  • Abe C, Kobayashi I, Mitarai S, et al. Biological and molecular characteristics of Mycobacterium tuberculosis clinical isolates with low-level resistance to isoniazid in Japan. J Clin Microbiol. 2008;46(7):2263–2268. doi:10.1128/JCM.00561-0818508939
  • World Health Organization. WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment. Geneva, Switzerland: WHO; 2019 Available from:https://apps.who.int/iris/bitstream/handle/10665/311389/9789241550529-eng.pdf?ua=1. Accessed 826, 2019.
  • Katiyar SK, Bihari S, Prakash S, Mamtani M, Kulkarni H. A randomised controlled trial of high-dose isoniazid adjuvant therapy for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2008;12(2):139–145.18230245
  • Zuur MA, Pasipanodya JG, van Soolingen D, van der Werf TS, Gumbo T, Alffenaar JC. Intermediate susceptibility dose-dependent breakpoints for high-dose rifampin, isoniazid, and pyrazinamide treatment in multidrug-resistant tuberculosis programs. Clin Infect Dis. 2018;67(11):1743–1749. doi:10.1093/cid/ciy34629697766
  • Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, norcardia spp., and other arerobic actinomycetes In: CLSI Standard M24. 3rd ed. Wayne, PA: CLSI; 2018
  • World Health Organization. Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis. Geneva, Switzerland: WHO; 2014 Available from:https://apps.who.int/iris/bitstream/handle/10665/130918/9789241548809_eng.pdf?sequence=1. Accessed 820, 2019.
  • Jaksuwan R, Tharavichikul P, Patumanond J, et al. Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand. Infect Drug Resist. 2017;10:167–174. doi:10.2147/IDR.S13020328706448
  • Faksri K, Kaewprasert O, Ong RT, et al. Comparisons of whole-genome sequencing and phenotypic drug susceptibility testing for Mycobacterium tuberculosis causing MDR-TB and XDR-TB in Thailand. Int J Antimicrob Agents. 2019;54(2):109–116. doi:10.1016/j.ijantimicag.2019.04.00430981926
  • Seifert M, Catanzaro D, Catanzaro A, Rodwell TC. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One. 2015;10(3):e0119628. doi:10.1371/journal.pone.011962825799046
  • Hang NTL, Hijikata M, Maeda S, et al. Whole genome sequencing, analyses of drug resistance-conferring mutations, and correlation with transmission of Mycobacterium tuberculosis carrying katG-S315T in Hanoi, Vietnam. Sci Rep. 2019;9(1):15354. doi:10.1038/s41598-019-51812-731653940
  • Aye KS, Nakajima C, Yamaguchi T, et al. Genotypic characterization of multi-drug-resistant Mycobacterium tuberculosis isolates in Myanmar. J Infect Chemother. 2016;22(3):174–179. doi:10.1016/j.jiac.2015.12.00926806152
  • Munir A, Kumar N, Ramalingam SB, et al. Identification and characterization of genetic determinants of isoniazid and rifampicin resistance in Mycobacterium tuberculosis in Southern India. Sci Rep. 2019;9(1):10283. doi:10.1038/s41598-019-46756-x31311987
  • Karunaratne G, Wijesundera SS, Vidanagama D, Adikaram CP, Perera J. Significance of coexisting mutations on determination of the degree of isoniazid resistance in Mycobacterium tuberculosis strains. Microb Drug Resist. 2018;24(6):844–851. doi:10.1089/mdr.2017.033029683767
  • Ruesen C, Riza AL, Florescu A, et al. Linking minimum inhibitory concentrations to whole genome sequence-predicted drug resistance in Mycobacterium tuberculosis strains from Romania. Sci Rep. 2018;8(1):9676. doi:10.1038/s41598-018-27962-529946139
  • Abanda NN, Djieugoue JY, Lim E, et al. Diagnostic accuracy and usefulness of the genotype MTBDRplus assay in diagnosing multidrug-resistant tuberculosis in Cameroon? A cross-sectional study. BMC Infect Dis. 2017;17(1):379. doi:10.1186/s12879-017-2489-328569148
  • Ghodousi A, Tagliani E, Karunaratne E, et al. Isoniazid resistance in Mycobacterium tuberculosis is a heterogeneous phenotype composed of overlapping MIC distributions with different underlying resistance mechanisms. Antimicrob Agents Chemother. 2019;63(7). doi:10.1128/AAC.00092-19.
  • Kandler JL, Mercante AD, Dalton TL, et al. Validation of novel Mycobacterium tuberculosis isoniazid resistance mutations not detectable by common molecular tests. Antimicrob Agents Chemother. 2018;62(10). doi:10.1128/AAC.00974-18.
  • van Soolingen D, de Haas PEW, van Doorn HR, Kuijper E, Rinder H, Borgdorff MW. Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands. J Infect Dis. 2000;182(6):1788–1790. doi:10.1086/31759811069256
  • Leechawengwongs M, Prammananan T, Jaitrong S, et al. In vitro activity and MIC of sitafloxacin against multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis isolated in Thailand. Antimicrob Agents Chemother. 2017;62(1):e00825–17. doi: 10.1128/AAC.00825-1729061759
  • Bureau of tuberculosis, Department of disease control. National Tuberculosis Control Programme Guideline, Thailand, 2018. 1st ed. Bangkok, Thailand: Department of disease control; 2018 Available fromhttps://www.tbthailand.org/download/Manual/NTP2018.pdf. Accessed 120, 2019.
  • Anuwatnonthakate A, Whitehead SJ, Varma JK, et al. Effect of mycobacterial drug resistance patterns on patients’ survival: a cohort study in Thailand. Glob J Health Sci. 2013;5(6):60–72. doi:10.5539/gjhs.v5n6p60