319
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Reversal of mcr-1-Mediated Colistin Resistance in Escherichia coli by CRISPR-Cas9 System

, , , , , , & show all
Pages 1171-1178 | Published online: 22 Apr 2020

References

  • Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–168. doi:10.1016/S1473-3099(15)00424-726603172
  • Sun J, Zhang HM, Liu YH, et al. Towards understanding MCR-like colistin resistance. Trends Microbiol. 2018;26:794–808. doi:10.1016/j.tim.2018.02.00629525421
  • Nang SC, Li J, Velkov T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit Rev Microbiol. 2019;45:131–161. doi:10.1080/1040841X.2018.149290231122100
  • Sun J, Yang RS, Zhang Q, et al. Co-transfer of blaNDM-5 and mcr-1 by an IncX3-X4 hybrid plasmid in Escherichia coli. Nat Microbiol. 2016;1:16176. doi:10.1038/nmicrobiol.2016.17627668643
  • Buckner MMC, Ciusa ML, Piddock LJV. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol Rev. 2018;42:781–804. doi:10.1093/femsre/fuy03130085063
  • Wang P, Zhu Q, Shang H, et al. Curing of plasmid pBMB28 from Bacillus thuringiensis YBT-020 using an unstable replication region. J Basic Microbiol. 2016;56:206–210. doi:10.1002/jobm.20150025626837065
  • Bikard D, Barrangou R. Using CRISPR-Cas systems as antimicrobials. Curr Opin Microbiol. 2017;37:155–160. doi:10.1016/j.mib.2017.08.00528888103
  • Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. doi:10.1126/science.125809625430774
  • Luo ML, Leenay RT, Beisel CL. Current and future prospects for CRISPR-based tools in bacteria. Biotechnol Bioeng. 2016;113:930–943. doi:10.1002/bit.2585126460902
  • de la Fuente-nunez C, Lu TK. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr Biol. 2017;9:109–122. doi:10.1039/c6ib00140h
  • Qiu HX, Gong JS, Butaye P, et al. CRISPR/Cas9/sgRNA-mediated targeted gene modification confirms the cause-effect relationship between gyrA mutation and quinolone resistance in Escherichia coli. FEMS Microbiol Lett. 2018;365.
  • Kim JS, D H C, Park M, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant escherichia coli harboring extended-spectrum beta-lactamases. J Microbiol Biotechnol. 2016;26:394–401. doi:10.4014/jmb.1508.0808026502735
  • Su T, Liu F, Gu P, et al. A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci Rep. 2016;6.
  • Cohen SN, Chang AC, Boyer HW, et al. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad. 1973;70:3240–3244. doi:10.1073/pnas.70.11.3240
  • CLSI. Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100. Wayne, PA. Clin Lab Stand Ins. 2018.
  • Chen L, Chen ZL, Liu JH, et al. Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. J Antimicrob Chemother. 2007;59:880–885. doi:10.1093/jac/dkm06517353219
  • World Health Organization (WHO) [ homepage on the Internet]. Geneva: antimicrobial resistance; 2018 Available from: http://www.who.int/en/newsroom/factsheets/detail/antimicrobial-resistance. Accessed 215, 2018.
  • Zhi CP, Lv LC, Yu LF, et al. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis. 2016;16:292–293. doi:10.1016/S1473-3099(16)00063-326973307
  • Sun J, Fang LX, Wu Z, et al. Genetic analysis of the IncX4 plasmids: implications for a unique pattern in the mcr-1 acquisition. Sci Rep. 2017;7.
  • Guo Q, Su J, McElheny CL, et al. IncX2 and IncX1-X2 hybrid plasmids coexisting in a fosa6-producing Escherichia coli strain. Antimicrob Agents Chemother. 2017;61.
  • Zhao FF, Feng Y, Lü X, et al. IncP plasmid carrying colistin resistance gene mcr-1 in klebsiella pneumoniae from hospital sewage. Antimicrob Agents Chemother. 2017;61.
  • Xavier BB, Lammens C, Butaye P, et al. Complete sequence of an IncFII plasmid harbouring the colistin resistance gene mcr-1 isolated from Belgian pig farms. J Antimicrob Chemother. 2016;71:2342–2344. doi:10.1093/jac/dkw19127261261
  • Li Z, Cao Y, Yi L, et al. Emergent polymyxin resistance: end of an era? Open Forum Infect Dis. 2019;6. doi:10.1093/ofid/ofz368.
  • Lauritsen I, Porse A, Sommer MOA, et al. A versatile one-step CRISPR-Cas9 based approach to plasmid-curing. Microb Cell Fact. 2017;16:135. doi:10.1186/s12934-017-0748-z28764701
  • Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol. 2014;32:1141–1145. doi:10.1038/nbt.301125240928
  • Bikard D, Euler CW, Jiang W, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32:1146–1150. doi:10.1038/nbt.304325282355
  • ZY W, Huang Y-T, Chao W-C, et al. Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome editing. J Adv Res. 2019;18:61–69. doi:10.1016/j.jare.2019.01.01130809393
  • Fu YF, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32:279–284. doi:10.1038/nbt.280824463574
  • Zhang JP, Li XL, Neises A, et al. Different Effects of sgRNA Length on CRISPR-mediated gene knockout efficiency. Sci Rep. 2016;6.
  • Yuen G, Khan FJ, Gao SJ, et al. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level. Nucleic Acids Res. 2017;45:12039–12053. doi:10.1093/nar/gkx84329036671
  • Shabbir MA, Shabbir MZ, Wu Q, et al. CRISPR-Cas system: biological function in microbes and its use to treat antimicrobial-resistant pathogens. Ann Clin Microbiol Antimicrob. 2019;18.
  • Yosef I, Manor M, Kiro R, et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA. 2015;112:7267–7272. doi:10.1073/pnas.150010711226060300
  • Zhang XH, Tee LY, Wang XG, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4.
  • Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34:184–191. doi:10.1038/nbt.343726780180
  • Park JY, Moon BY, Park JW, et al. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus.. Sci Rep. 2017;7.