856
Views
18
CrossRef citations to date
0
Altmetric
Review

Current Aspects in the Biology, Pathogeny, and Treatment of Candida krusei, a Neglected Fungal Pathogen

& ORCID Icon
Pages 1673-1689 | Published online: 10 Jun 2020

References

  • Klingspor L, Tortorano AM, Peman J, et al. Invasive Candida infections in surgical patients in intensive care units: a prospective, multicentre survey initiated by the European Confederation of Medical Mycology (ECMM) (2006–2008). Clin Microbiol Infect. 2015;21(1):87.e81-87.e10. doi:10.1016/j.cmi.2014.08.011
  • Andes DR, Safdar N, Baddley JW, et al. The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Transpl Infect Dis. 2016;18(6):921–931. doi:10.1111/tid.1261327643395
  • Cornely OA. on behalf of the EIDG, Gachot B, et al. Epidemiology and outcome of fungemia in a cancer cohort of the infectious diseases group (IDG) of the european organization for research and treatment of cancer (EORTC 65031). Clin Infect Dis. 2015;61(3):324–331. doi:10.1093/cid/civ29325870323
  • Viscoli C, Girmenia C, Marinus A, et al. Candidemia in cancer patients: a prospective, multicenter surveillance study by the Invasive Fungal Infection Group (IFIG) of the European Organization for Research and Treatment of Cancer (EORTC). Clin Infect Dis. 1999;28(5):1071–1079. doi:10.1086/51473110452637
  • Blot SI, Vandewoude KH, Hoste EA, Colardyn FA. Effects of nosocomial candidemia on outcomes of critically ill patients. Am J Med. 2002;113(6):480–485. doi:10.1016/S0002-9343(02)01248-212427497
  • Eliakim-Raz N, Babaoff R, Yahav D, Yanai S, Shaked H, Bishara J. Epidemiology, microbiology, clinical characteristics, and outcomes of candidemia in internal medicine wards—a retrospective study. Int J Infect Dis. 2016;52:49–54. doi:10.1016/j.ijid.2016.09.01827663909
  • Lass-Flörl C. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses. 2009;52(3):197–205. doi:10.1111/j.1439-0507.2009.01691.x19391253
  • Tan TY, Tan AL, Tee NWS, Ng LSY, Chee CWJ. The increased role of non-albicans species in candidaemia: results from a 3-year surveillance study. Mycoses. 2010;53(6):515–521. doi:10.1111/j.1439-0507.2009.01746.x19619263
  • Pfaller MA, Boyken L, Hollis RJ, Messer SA, Tendolkar S, Diekema DJ. In vitro activities of anidulafungin against more than 2,500 clinical isolates of Candida spp., including 315 isolates resistant to fluconazole. J Clin Microbiol. 2005;43(11):5425–5427. doi:10.1128/JCM.43.11.5425-5427.200516272464
  • Pfaller Michael A, Pappas Peter G, Wingard John R. Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis. 2006;43(S1):S3–S14. doi:10.1086/504490
  • Tortorano AM, Kibbler C, Peman J, Bernhardt H, Klingspor L, Grillot R. Candidaemia in Europe: epidemiology and resistance. Int J Antimicrob Agents. 2006;27(5):359–366. doi:10.1016/j.ijantimicag.2006.01.00216647248
  • Wisplinghoff H, Bischoff T, Tallent Sandra M, Seifert H, Wenzel Richard P, Edmond Michael B. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–317. doi:10.1086/42194615306996
  • Samaranayake YH, Samaranayake LP. Candida krusei: biology, epidemiology, pathogenicity and clinical manifestations of an emerging pathogen. J Med Microbiol. 1994;41(5):295–310. doi:10.1099/00222615-41-5-2957966200
  • Samaranayake YH, Wu PC, Samaranayake LP, PL HO. The relative pathogenicity of Candida Krusei and C. albicans in the rat oral mucosa. J Med Microbiol. 1998;47(12):1047–1057. doi:10.1099/00222615-47-12-10479856640
  • Fleischmann J, Broeckling CD, Lyons S. Candida krusei form mycelia along agar surfaces towards each other and other Candida species. BMC Microbiol. 2017;17(1):60. doi:10.1186/s12866-017-0972-z28284180
  • Toth R, Nosek J, Mora-Montes HM, et al. Candida parapsilosis: from genes to the bedside. Clin Microbiol Rev. 2019;32:2.
  • Zheng Q, Zhang Q, Bing J, Ding X, Huang G. Environmental and genetic regulation of white-opaque switching in. Candida Tropicalis. Mol Microbiol. 2017;106(6):999–1017. doi:10.1111/mmi.1386229030879
  • Soll DR. The role of phenotypic switching in the basic biology and pathogenesis of Candida albicans. J Oral Microbiol. 2014;6(1):22993. doi:10.3402/jom.v3406.22993
  • Joshi KR, Wheeler EE, Gavin JB. The ultrastructure of Candida krusei Candida krusei. Mycopathologia. 1975;56(1):5–8. doi:10.1007/BF0493575807847
  • Navarro-Arias MJ, Hernandez-Chavez MJ, Garcia-Carnero LC, et al. Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect Drug Resist. 2019;12:783–794. doi:10.2147/IDR.S19753131040708
  • Kogan G, Pavliak V, Sandula J, Masler L. Novel structure of the cellular mannan of the pathogenic yeast Candida krusei. Carbohydr Res. 1988;184:171–182. doi:10.1016/0008-6215(88)80015-63149545
  • Mora-Montes HM, Ponce-Noyola P, Villagómez-Castro JC, Gow NAR, Flores-Carreón A, López-Romero E. Protein glycosylation in Candida. Future Microbiol 2009;4(9):1167–1183. doi:10.2217/fmb.09.8819895219
  • Kuraoka T, Ishiyama A, Oyamada H, Ogawa Y, Kobayashi H. Presence of O-glycosidically linked oligosaccharides in the cell wall mannan of Candida krusei purified with Benanomicin A. FEBS Open Bio. 2018;9(1):129–136. doi:10.1002/2211-5463.12558
  • Diaz-Jimenez DF, Mora-Montes HM, Hernandez-Cervantes A, Luna-Arias JP, Gow NA, Flores-Carreon A. Biochemical characterization of recombinant Candida albicans mannosyltransferases Mnt1, Mnt2 and Mnt5 reveals new functions in O- and N-mannan biosynthesis. Biochem Biophys Res Commun. 2012;419(1):77–82. doi:10.1016/j.bbrc.2012.01.13122326920
  • Serrano-Fujarte I, Lopez-Romero E, Cuellar-Cruz M. Moonlight-like proteins of the cell wall protect sessile cells of Candida from oxidative stress. Microb Pathog. 2016;90:22–33. doi:10.1016/j.micpath.2015.10.00126550764
  • Vecchione A, Florio W, Celandroni F, Barnini S, Lupetti A, Ghelardi E. Comparative evaluation of six chromogenic media for presumptive yeast identification. J Clin Pathol. 2017;70(12):1074–1078. doi:10.1136/jclinpath-2017-20439628663328
  • Liu HJ, Liu DH, Zhong JJ. Novel fermentation strategy for enhancing glycerol production by Candida krusei. Biotechnol Prog. 2003;19(5):1615–1619. doi:10.1021/bp034097f14524727
  • Greppi A, Rantisou K, Padonou W, et al. Yeast dynamics during spontaneous fermentation of mawè and tchoukoutou, two traditional products from Benin. Int J Food Microbiol. 2013;165(2):200–207. doi:10.1016/j.ijfoodmicro.2013.05.00423756236
  • Omemu AM, Oyewole OB, Bankole MO. Significance of yeasts in the fermentation of maize for ogi production. Food Microbiol. 2007;24(6):571–576. doi:10.1016/j.fm.2007.01.00617418307
  • Halm M, Hornbæk T, Arneborg N, Sefa-Dedeh S, Jespersen L. Lactic acid tolerance determined by measurement of intracellular pH of single cells of Candida krusei and Saccharomyces cerevisiae isolated from fermented maize dough. Int J Food Microbiol. 2004;94(1):97–103. doi:10.1016/j.ijfoodmicro.2003.12.01915172490
  • Randhawa HS, Mussa AY, Khan ZU. Decaying wood in tree trunk hollows as a natural substrate for Cryptococcus neoformans and other yeast-like fungi of clinical interest. Mycopathologia. 2001;151(2):63–69. doi:10.1023/A:101090622088811554580
  • Bernard EM, Christiansen KJ, Tsang SF, Kiehn TE, Armstrong D. Rate of arabinitol production by pathogenic yeast species. J Clin Microbiol. 1981;14(2):189–194. doi:10.1128/JCM.14.2.189-194.19817024306
  • Cuomo CA, Shea T, Yang B, Rao R, Forche A. Whole genome sequence of the heterozygous clinical isolate Candida krusei 81-B-5. G3 (Bethesda). 2017;7(9):2883–2889.
  • Jacobsen MD, Gow NAR, Maiden MCJ, Shaw DJ, Odds FC. Strain typing and determination of population structure of Candida krusei by multilocus sequence typing. J Clin Microbiol. 2007;45(2):317–323. doi:10.1128/JCM.01549-0617122025
  • Douglass AP, Offei B, Braun-Galleani S, et al. Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: one species, four names. PLoS Pathog. 2018;14(7):e1007138–e1007138. doi:10.1371/journal.ppat.100713830024981
  • Butler G, Rasmussen MD, Lin MF, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459(7247):657–662. doi:10.1038/nature0806419465905
  • Estrada-Mata E, Navarro-Arias MJ, Perez-Garcia LA, et al. Members of the Candida parapsilosis complex and Candida albicans are differentially recognized by human peripheral blood mononuclear cells. Front Microbiol. 2015;6:1527.26793173
  • Navarro-Arias MJ, Defosse TA, Dementhon K, et al. Disruption of protein mannosylation affects Candida guilliermondii cell wall, immune sensing, and virulence. Front Microbiol. 2016;7:1951. doi:10.3389/fmicb.2016.0195127994582
  • Perez-Garcia LA, Csonka K, Flores-Carreon A, et al. Role of protein glycosylation in Candida parapsilosis cell wall integrity and host interaction. Front Microbiol. 2016;7:306. doi:10.3389/fmicb.2016.0030627014229
  • Koga-Ito CY, Komiyama EY, de Paiva Martins CA, et al. Experimental systemic virulence of oral Candida dubliniensis isolates in comparison with Candida albicans, Candida tropicalis and Candida krusei. Mycoses. 2011;54(5):e278–e285. doi:10.1111/j.1439-0507.2010.01899.x20492535
  • Anaissie E, Hachem R, Tin-U C, Stephens LC, Bodey GP. Experimental hematogenous candidiasis caused by Candida krusei and Candida albicans: species differences in pathogenicity. Infect Immun. 1993;61(4):1268–1271. doi:10.1128/IAI.61.4.1268-1271.19938454330
  • Ortega-Riveros M, De-la-Pinta I, Marcos-Arias C, Ezpeleta G, Quindós G, Eraso E. Usefulness of the non-conventional Caenorhabditis elegans model to assess Candida virulence. Mycopathologia. 2017;182(9):785–795. doi:10.1007/s11046-017-0142-828523422
  • Aguiar Cordeiro R, de Jesus Evangelista AJ, Serpa R, et al. β-lactam antibiotics & vancomycin increase the growth & virulence of Candida spp. Future Microbiol. 2018;13(8):869–875. doi:10.2217/fmb-2018-001929882422
  • Silva LN, Campos-Silva R, Ramos LS, et al. Virulence of Candida haemulonii complex in Galleria mellonella and efficacy of classical antifungal drugs: a comparative study with other clinically relevant non-albicans Candida species. FEMS Yeast Res. 2018;18(7):foy082. doi:10.1093/femsyr/foy082
  • Marcos-Zambrano LJ, Bordallo-Cardona MÁ, Borghi E, et al. Candida isolates causing candidemia show different degrees of virulence in Galleria mellonella. Med Mycol. 2020;58(1):83–92. doi:10.1093/mmy/myz02730874807
  • Santos RB, Scorzoni L, Namba AM, Rossoni RD, Jorge AOC, Junqueira JC. Lactobacillus species increase the survival of Galleria mellonella infected with Candida albicans and non–albicans Candida clinical isolates. Med Mycol. 2018;57(3):391–394. doi:10.1093/mmy/myy032
  • Chamilos G, Lionakis MS, Lewis RE, et al. Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. J Infect Dis. 2006;193(7):1014–1022. doi:10.1086/50095016518764
  • Ellepola ANB, Panagoda GJ, Samaranayake LP. Adhesion of oral Candida species to human buccal epithelial cells following brief exposure to nystatin. Oral Microbiol Immunol. 1999;14(6):358–363. doi:10.1034/j.1399-302X.1999.140605.x10895691
  • Klotz SA, Drutz DJ, Harrison JL, Huppert M. Adherence and penetration of vascular endothelium by Candida yeasts. Infect Immun. 1983;42(1):374–384. doi:10.1128/IAI.42.1.374-384.19836352500
  • Samaranayake YH, Wu PC, Samaranayake LP, So M, Yuen KY. Adhesion and colonisation of Candida krusei on host surfaces. J Med Microbiol. 1994;41(4):250–258. doi:10.1099/00222615-41-4-2507932617
  • Arzmi MH, Abdul Razak F, Yusoff Musa M, Wan Harun WHA. Effect of phenotypic switching on the biological properties and susceptibility to chlorhexidine in Candida krusei ATCC 14243. FEMS Yeast Res. 2012;12(3):351–358. doi:10.1111/j.1567-1364.2011.00786.x22225549
  • Li F, Palecek SP. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell. 2003;2(6):1266–1273. doi:10.1128/EC.2.6.1266-1273.200314665461
  • Kempf M, Apaire-Marchais V, Saulnier P, et al. Disruption of Candida albicans IFF4 gene involves modifications of the cell electrical surface properties. Colloids Surf B: Biointerfaces. 2007;58(2):250–255. doi:10.1016/j.colsurfb.2007.03.01717481864
  • Sandini S, La Valle R, De Bernardis F, Macrì C, Cassone A. The 65 kDa mannoprotein gene of Candida albicans encodes a putative β-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell Microbiol. 2007;9(5):1223–1238. doi:10.1111/j.1462-5822.2006.00862.x17217426
  • Calderon J, Zavrel M, Ragni E, Fonzi WA, Rupp S, Popolo L. PHR1, a pH-regulated gene of Candida albicans encoding a glucan-remodelling enzyme, is required for adhesion and invasion. Microbiology. 2010;156(8):2484–2494. doi:10.1099/mic.0.038000-020430812
  • Gale CA, Bendel CM, McClellan M, et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans; to a single gene INT1. Science. 1998;279(5355):1355–1358. doi:10.1126/science.279.5355.13559478896
  • Martinez-Lopez R, Park H, Myers CL, Gil C, Filler SG. Candida albicans Ecm33p is important for normal cell wall architecture and interactions with host cells. Eukaryot Cell. 2006;5(1):140–147. doi:10.1128/EC.5.1.140-147.200616400176
  • Hoyer LL. The ALS gene family of Candida albicans. Trends Microbiol. 2001;9(4):176–180. doi:10.1016/S0966-842X(01)01984-911286882
  • Samaranayake YH, Wu PC, Samaranayake LP, So M. Relationship between the cell surface hydrophobicity and adherence of Candida krusei and Candida albicans to epithelial and denture acrylic surfaces. APMIS. 1995;103(7‐8):707–713. doi:10.1111/j.1699-0463.1995.tb01427.x8534429
  • Riceto É, Menezes R, Penatti MPA, Pedroso R. Enzymatic and hemolytic activity in different Candida species. Rev Iberoam Micol. 2015;32(2):79–82. doi:10.1016/j.riam.2013.11.00324704439
  • Pandey N, Gupta MK, Tilak R. Extracellular hydrolytic enzyme activities of the different Candida spp. isolated from the blood of the intensive care unit-admitted patients. J Lab Physicians. 2018;10(4):392–396. doi:10.4103/JLP.JLP_81_1830498309
  • Furlaneto-Maia L, Specian AF, Bizerra FC, de Oliveira MT, Furlaneto MC. In vitro evaluation of putative virulence attributes of oral isolates of Candida spp. obtained from elderly healthy individuals. Mycopathologia. 2008;166(4):209. doi:10.1007/s11046-008-9139-718597183
  • Portela MB, Lima de Amorim E, Santos AM, et al. Candida species from oral cavity of HIV-infected children exhibit reduced virulence factors in the HAART era. Microb Pathog. 2017;102:74–81. doi:10.1016/j.micpath.2016.11.02027913142
  • Leidich SD, Ibrahim AS, Fu Y, et al. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem. 1998;273(40):26078–26086. doi:10.1074/jbc.273.40.260789748287
  • Sugiyama Y, Nakashima S, Mirbod F, et al. Molecular cloning of a second phospholipase B gene, caPLB2 from Candida albicans. Medical Mycology. 1999;37(1):61–67.10200936
  • Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schäfer W. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol. 2000;174(5):362–374. doi:10.1007/s00203000021811131027
  • Noumi E, Snoussi M, Noumi I, Saghrouni F, Aouni M, Valentin E. Phenotypic characterization and adhesive properties of vaginal Candida spp. strains provided by the CHU Farhat Hached (Sousse, Tunisia). Rev Iberoam Micol. 2015;32(3):170–179. doi:10.1016/j.riam.2014.06.00625618183
  • Şeker E. Identification of Candida species isolated from bovine mastitic milk and their in vitro hemolytic activity in western Turkey. Mycopathologia. 2010;169(4):303–308.19921462
  • Yigit N, Aktas E, Dagistan S, Ayyildiz A. Investigating biofilm production, coagulase and hemolytic activity in Candida species isolated from denture stomatitis patients. Eurasian J Med. 2011;43(1):27–32. doi:10.5152/eajm.2011.0625610156
  • Magee BB, Hube B, Wright RJ, Sullivan PJ, Magee PT. The genes encoding the secreted aspartyl proteinases of Candida albicans constitute a family with at least three members. Infect Immun. 1993;61(8):3240–3243. doi:10.1128/IAI.61.8.3240-3243.19938335356
  • White TC, Miyasaki SH, Agabian N. Three distinct secreted aspartyl proteinases in Candida albicans. J Bacteriol. 1993;175(19):6126–6133. doi:10.1128/JB.175.19.6126-6133.19938407785
  • Sánchez-Vargas LO, Estrada-Barraza D, Pozos-Guillen AJ, Rivas-Caceres R. Biofilm formation by oral clinical isolates of Candida species. Arch Oral Biol. 2013;58(10):1318–1326. doi:10.1016/j.archoralbio.2013.06.00623849353
  • Salari S, Sadat Seddighi N, Ghasemi Nejad Almani P. Evaluation of biofilm formation ability in different Candida strains and anti-biofilm effects of Fe3O4-NPs compared with fluconazole: an in vitro study. J Mycol Med. 2018;28(1):23–28. doi:10.1016/j.mycmed.2018.02.00729519624
  • Cao -Y-Y, Cao Y-B, Xu Z, et al. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother. 2005;49(2):584–589. doi:10.1128/AAC.49.2.584-589.200515673737
  • Nobile CJ, Mitchell AP. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol. 2005;15(12):1150–1155. doi:10.1016/j.cub.2005.05.04715964282
  • Nobile CJ, Fox EP, Nett JE, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012;148(1–2):126–138.22265407
  • Nobile CJ, Nett JE, Hernday AD, et al. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 2009;7(6):e1000133–e1000133. doi:10.1371/journal.pbio.100013319529758
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–128. doi:10.4161/viru.2291323302789
  • Zheng X, Wang Y, Wang Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 2004;23(8):1845–1856. doi:10.1038/sj.emboj.760019515071502
  • García-Sánchez S, Mavor AL, Russell CL, et al. Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol Biol Cell. 2005;16(6):2913–2925. doi:10.1091/mbc.e05-01-007115814841
  • Liu H, Kohler J, Fink G. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science. 1994;266(5191):1723–1726. doi:10.1126/science.79920587992058
  • de Barros PP, Freire F, Rossoni RD, Junqueira JC, Jorge AOC. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene. Folia Microbiol (Praha). 2017;62(4):317–323. doi:10.1007/s12223-017-0500-428164244
  • Kupfahl C, Ruppert T, Dietz A, Geginat G, Hof H. Candida species fail to produce the immunosuppressive secondary metabolite gliotoxin in vitro. FEMS Yeast Res. 2007;7(6):986–992. doi:10.1111/j.1567-1364.2007.00256.x17537180
  • Moyes DL, Wilson D, Richardson JP, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532(7597):64–68. doi:10.1038/nature1762527027296
  • Botelho NS, de Paula SB, Panagio LA, Pinge-Filho P, Yamauchi LM, Yamada-Ogatta SF. Candida species isolated from urban bats of Londrina-Paraná, Brazil and their potential virulence. Zoonoses Public Health. 2012;59(1):16–22. doi:10.1111/j.1863-2378.2011.01410.x21824363
  • Subramanya SH, Sharan NK, Baral BP, et al. Diversity, in-vitro virulence traits and antifungal susceptibility pattern of gastrointestinal yeast flora of healthy poultry, Gallus gallus domesticus. BMC Microbiol. 2017;17(1):113. doi:10.1186/s12866-017-1024-428506251
  • Brilhante RSN, de Alencar LP, Cordeiro RA, et al. Detection of Candida species resistant to azoles in the microbiota of rheas (Rhea americana): possible implications for human and animal health. J Med Microbiol. 2013;62(Pt 6):889–895. doi:10.1099/jmm.0.055566-023493027
  • Azarvandi A, Khosravi AR, Shokri H, et al. Presence and distribution of yeasts in the reproductive tract in healthy female horses. Equine Vet J. 2017;49(5):614–617. doi:10.1111/evj.1265727931081
  • Martinez-Alvarez JA, Perez-Garcia LA, Flores-Carreon A, Mora-Montes HM. The immune response against Candida spp. and Sporothrix schenckii. Rev Iberoam Micol. 2014;31(1):62–66. doi:10.1016/j.riam.2013.09.01524252829
  • Hernandez-Chavez MJ, Perez-Garcia LA, Nino-Vega GA, Mora-Montes HM. Fungal strategies to evade the host immune recognition. J Fungi (Basel). 2017;3(4):51. doi:10.3390/jof3040051
  • Gácser A, Tiszlavicz Z, Németh T, Seprényi G, Mándi Y. Induction of human defensins by intestinal Caco-2 cells after interactions with opportunistic Candida species. Microbes Infect. 2014;16(1):80–85. doi:10.1016/j.micinf.2013.09.00324095867
  • Samaranayake YH, Samaranayake LP, Wu PC, So M. The antifungal effect of lactoferrin and lysozyme on Candida krusei and Candida albicans. APMIS. 1997;105(7‐12):875–883. doi:10.1111/j.1699-0463.1997.tb05097.x9393559
  • Chen SM, Zou Z, Qiu XR, et al. The critical role of dectin-1 in host controlling systemic Candida krusei infection. Am J Transl Res. 2019;11(2):721–732.30899374
  • Xiong J, Kang K, Liu L, Yoshida Y, Cooper KD, Ghannoum MA. Candida albicans and Candida krusei differentially induce human blood mononuclear cell interleukin-12 and gamma interferon production. Infect Immun. 2000;68(5):2464–2469. doi:10.1128/IAI.68.5.2464-2469.200010768932
  • H⊘gÅsen AKM, Abrahamsen TG, Gaustad P. Various Candida and Torulopsis species differ in their ability to induce the production of C3, factor B and granulocyte-macrophage colony-stimulating factor (GM-CSF) in human monocyte cultures. J Med Microbiol. 1995;42(4):291–298. doi:10.1099/00222615-42-4-2917707338
  • Richardson MD, Donaldson F. Interaction of Candida krusei with human neutrophils in vitro. J Med Microbiol. 1994;41(6):384–388. doi:10.1099/00222615-41-6-3847966213
  • Cunden LS, Gaillard A, Nolan EM. Calcium ions tune the zinc-sequestering properties and antimicrobial activity of human S100A12. Chem Sci. 2016;7(2):1338–1348. doi:10.1039/C5SC03655K26913170
  • Nessa K, Johansson A, Jarstrand C, Camner P. Alveolar macrophage reaction to Candida species. Lett Appl Microbiol. 1997;25(3):181–185. doi:10.1046/j.1472-765X.1997.00200.x9351260
  • García-Rodas R, González-Camacho F, Rodríguez-Tudela JL, Cuenca-Estrella M, Zaragoza O. The interaction between Candida krusei and murine macrophages results in multiple outcomes, including intracellular survival and escape from killing. Infect Immun. 2011;79(6):2136–2144. doi:10.1128/IAI.00044-1121422181
  • Wellington M, Koselny K, Sutterwala FS, Krysan DJ. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot Cell. 2014;13(2):329–340. doi:10.1128/EC.00336-1324376002
  • Nguyen TNY, Padungros P, Wongsrisupphakul P, et al. Cell wall mannan of Candida krusei mediates dendritic cell apoptosis and orchestrates Th17 polarization via TLR-2/MyD88-dependent pathway. Sci Rep. 2018;8(1):17123. doi:10.1038/s41598-018-35101-330459422
  • Fidan I, Yesilyurt E, Kalkanci A, et al. Immunomodulatory effects of voriconazole and caspofungin on human peripheral blood mononuclear cells stimulated by Candida albicans and Candida krusei. Am J Med Sci. 2014;348(3):219–223. doi:10.1097/MAJ.000000000000023624662309
  • Li R, Zhang L, Zhang H, et al. Protective effect of a novel antifungal peptide derived from human chromogranin a on the immunity of mice infected with Candida krusei. Exp Ther Med. 2017;13(5):2429–2434. doi:10.3892/etm.2017.429028565859
  • Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect. 2014;20:5–10. doi:10.1111/1469-0691.12539
  • Labbé A-C, Pépin J, Patiño C, Castonguay S, Restieri C, Laverdiere M. A single-centre 10-year experience with Candida bloodstream infections. Can J Infect Dis Med Microbiol. 2009;20(2):45–50. doi:10.1155/2009/73107020514159
  • Mullen CA, Abd. El-Baki H, Samir H, Tarrand JJ, Rolston KV. Non-albicans Candida is the most common cause of candidemia in pediatric cancer patients. Support Care Cancer. 2003;11(5):321–325. doi:10.1007/s00520-003-0453-912720076
  • Chaudhary U, Goel S, Mittal S. Changing trends of Candidemia and antifungal susceptibility pattern in a tertiary health care centre. Infect Disord Drug Targets. 2015;15(3):171–176. doi:10.2174/187152651566615092811530726411557
  • Pfaller M, Neofytos D, Diekema D, et al. Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance®) registry, 2004–2008. Diagn Microbiol Infect Dis. 2012;74(4):323–331. doi:10.1016/j.diagmicrobio.2012.10.00323102556
  • Lortholary O, Renaudat C, Sitbon K, et al. The risk and clinical outcome of candidemia depending on underlying malignancy. Intensive Care Med. 2017;43(5):652–662. doi:10.1007/s00134-017-4743-y28321466
  • Ding X, Yan D, Sun W, Zeng Z, Su R, Su J. Epidemiology and risk factors for nosocomial Non-Candida albicans candidemia in adult patients at a tertiary care hospital in North China. Med Mycol. 2015;53(7):684–690. doi:10.1093/mmy/myv06026229153
  • Marco F, Danés C, Almela M, et al. Trends in frequency and in vitro susceptibilities to antifungal agents, including voriconazole and anidulafungin, of Candida bloodstream isolates. results from a six-year study (1996–2001). Diagn Microbiol Infect Dis. 2003;46(4):259–264. doi:10.1016/S0732-8893(03)00086-512944017
  • Pfaller MA, Jones RN, Messer SA, Edmond MB, Wenzel RP. National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE program. Diagn Microbiol Infect Dis. 1998;30(2):121–129. doi:10.1016/S0732-8893(97)00192-29554180
  • Sabino R, Verissimo C, Brandao J, et al. Epidemiology of candidemia in oncology patients: a 6-year survey in a Portuguese central hospital. Med Mycol. 2010;48(2):346–354. doi:10.3109/1369378090316121619657956
  • Xess I, Jain N, Hasan F, Mandal P, Banerjee U. Epidemiology of candidemia in a tertiary care centre of North India: 5-year study. Infection. 2007;35(4):256–259. doi:10.1007/s15010-007-6144-617646917
  • Chen C-Y, Huang S-Y, Tsay W, et al. Clinical characteristics of candidaemia in adults with haematological malignancy, and antimicrobial susceptibilities of the isolates at a medical centre in Taiwan, 2001–2010. Int J Antimicrob Agents. 2012;40(6):533–538. doi:10.1016/j.ijantimicag.2012.07.02223006521
  • Bukharie HA. Nosocomial candidemia in a tertiary care hospital in Saudi Arabia. Mycopathologia. 2002;153(4):195–198. doi:10.1023/A:101494551779012014479
  • Playford EG, Marriott D, Nguyen Q, et al. Candidemia in nonneutropenic critically ill patients: risk factors for non-albicans Candida spp. Crit Care Med. 2008;36(7):2034–2039. doi:10.1097/CCM.0b013e3181760f4218552700
  • Ko J-H, Jung DS, Lee JY, et al. Changing epidemiology of non albicans candidemia in Korea. J Infect Chemother. 2019;25(5):388–391. doi:10.1016/j.jiac.2018.09.01630482698
  • Bonfietti LX, Szeszs MW, Chang MR, et al. Ten-year study of species distribution and antifungal susceptibilities of Candida bloodstream isolates at a Brazilian tertiary hospital. Mycopathologia. 2012;174(5):389–396. doi:10.1007/s11046-012-9566-322821345
  • Dimopoulos G, Ntziora F, Rachiotis G, Armaganidis A, Falagas ME. Candida albicans versus non-albicans intensive care unit-acquired bloodstream infections: differences in risk factors and outcome. Anesth Analg. 2008;106(2):523–529. doi:10.1213/ane.0b013e318160726218227310
  • Papadimitriou-Olivgeris M, Spiliopoulou A, Kolonitsiou F, et al. Increasing incidence of candidaemia and shifting epidemiology in favor of Candida non-albicans in a 9-year period (2009–2017) in a university Greek hospital. Infection. 2019;47(2):209–216. doi:10.1007/s15010-018-1217-230196355
  • Treviño-Rangel R, Peña-López CD, Hernández-Rodríguez PA, Beltrán-Santiago D, González GM. Association between Candida biofilm-forming bloodstream isolates and the clinical evolution in patients with candidemia: an observational nine-year single center study in Mexico. Rev Iberoam Micol. 2018;35(1):11–16. doi:10.1016/j.riam.2017.01.00529287632
  • Marchetti O, Bille J, Fluckiger U, et al. Epidemiology of candidemia in Swiss tertiary care hospitals: secular trends, 1991–2000. Clin Infect Dis. 2004;38(3):311–320. doi:10.1086/38063714727199
  • Fridkin SK, Kaufman D, Edwards JR, Shetty S, Horan T. Changing incidence of Candida bloodstream infections among NICU patients in the United States: 1995–2004. Pediatrics. 2006;117(5):1680–1687. doi:10.1542/peds.2005-199616651324
  • Hachem R, Hanna H, Kontoyiannis D, Jiang Y, Raad I. The changing epidemiology of invasive candidiasis. Cancer. 2008;112(11):2493–2499. doi:10.1002/cncr.2346618412153
  • Sipsas NV, Lewis RE, Tarrand J, et al. Candidemia in patients with hematologic malignancies in the era of new antifungal agents (2001-2007). Cancer. 2009;115(20):4745–4752. doi:10.1002/cncr.2450719634156
  • Schuster MG, Meibohm A, Lloyd L, Strom B. Risk factors and outcomes of Candida krusei bloodstream infection: A matched, case-control study. J Infect. 2013;66(3):278–284. doi:10.1016/j.jinf.2012.11.00223174708
  • Lin MY, Carmeli Y, Zumsteg J, et al. Prior antimicrobial therapy and risk for hospital-acquired Candida glabrata and Candida krusei fungemia: a case-case-control study. Antimicrob Agents Chemother. 2005;49(11):4555–4560. doi:10.1128/AAC.49.11.4555-4560.200516251295
  • Amaral-Lopes S, Moura A. Neonatal fungal sepsis by Candida krusei: A report of three cases and a literature review. Medical Mycol Case Rep. 2012;1(1):24–26. doi:10.1016/j.mmcr.2012.04.002
  • Prasad PA, Fisher BT, Coffin SE, et al. Pediatric risk factors for candidemia secondary to Candida glabrata and Candida krusei species. J Pediatric Infect Dis Soc. 2013;2(3):263–266. doi:10.1093/jpids/pis09324009984
  • Fan SR, Liu XP, Li JW. Clinical characteristics of vulvovaginal candidiasis and antifungal susceptibilities of Candida species isolates among patients in southern China from 2003 to 2006. J Obstet and Gynaecol Res. 2008;34(4):561–566. doi:10.1111/j.1447-0756.2008.00817.x18937710
  • Imtiaz T, Thomson F, Innes A, du Toit FC, Bal AM. Candida krusei bronchopneumonia with nodular infiltrates in a patient with chronic renal failure on haemodialysis – case report and review of literature. Mycoses. 2011;54(5):e611–e614. doi:10.1111/j.1439-0507.2010.01925.x20809925
  • Rook GD, Brand D. Candida krusei as a pathogen; case report of an unusual infection of the tonsils. Pediatrics. 1950;6(4):638–643.14786003
  • Lu H, Marengo MF, Mihu CN, Garcia-Manero G, Suarez-Almazor ME. Rare case of septic arthritis caused by Candida krusei: case report and literature review. J Rheumatol. 2012;39(6):1308–1309. doi:10.3899/jrheum.11134822661427
  • Jud P, Valentin T, Regauer S, et al. Invasive Candida krusei infection and Candida vasculitis of a leg ulcer in an immunocompetent patient: a case report. Int J Infect Dis. 2017;55:96–98. doi:10.1016/j.ijid.2017.01.01028104503
  • Multani A, Subramanian AK, Liu AY. Successful eradication of chronic symptomatic Candida krusei urinary tract infection with increased dose micafungin in a liver and kidney transplant recipient: case report and review of the literature. Transpl Infect Dis. 2019;21(4):e13118. doi:10.1111/tid.1311831111613
  • Kano R, Konishi K, Nakata K, et al. Isolation of Candida krusei from a case of bovine bronchopneumonia in a one-year-old heifer. Vet Rec. 2001;148(20):636. doi:10.1136/vr.148.20.63611394804
  • Gaudie CM, Wragg PN, Barber AM. Outbreak of disease due to Candida krusei in a small dairy herd in the UK. Vet Rec. 2009;165(18):535–537. doi:10.1136/vr.165.18.53519880862
  • Sheena A, Sigler L. Candida krusei isolated from a sporadic case of bovine mastitis. Can Vet J. 1995;36(6):365.7648539
  • Seker E. Identification of Candida species isolated from bovine mastitic milk and their in vitro hemolytic activity in Western Turkey. Mycopathologia. 2010;169(4):303–308.19921462
  • Du J, Wang X, Luo H, Wang Y, Liu X, Zhou X. Epidemiological investigation of non-albicans Candida species recovered from mycotic mastitis of cows in Yinchuan, Ningxia of China. BMC Vet Res. 2018;14(1):251. doi:10.1186/s12917-018-1564-330157847
  • Ksouri S, Djebir S, Hadef Y, Benakhla A. Survey of bovine mycotic mastitis in different mammary gland statuses in two north-eastern regions of Algeria. Mycopathologia. 2015;179(3–4):327–331. doi:10.1007/s11046-014-9845-225481847
  • Wawron W, Bochniarz M, Szczubiał M. Enzymatic activity of yeasts isolated from the inflamed mammary secretion in dairy cows. Pol J Vet Sci. 2011;14(1):65–68. doi:10.2478/v10181-011-0009-821528713
  • Boutilier P, Carr A. Fungal colonization and failure of a long-term gastrostomy tube in a cat. Can Vet J. 2005;46(8):709–710.16187714
  • Elad D, Shpigel NY, Winkler M, et al. Feed contamination with Candida krusei as a probable source of mycotic mastitis in dairy cows. J Am Vet Med Assoc. 1995;207(5):620–622.7649779
  • Donnelly KA, Wellehan JFX Jr., Quesenberry K. Gastrointestinal disease associated with non-albicans Candida species in six birds. J Avian Med Surg. 2019;33(4):413–418. doi:10.1647/2018-41931833310
  • Muir M, Raidal SR. Necrotising ventriculitis due to combined infection with Rhizopus microsporus var. chinensis and Candida krusei in an eclectus parrot (Eclectus roratus). Aust Vet J. 2012;90(7):277–280. doi:10.1111/j.1751-0813.2012.00929.x22731951
  • Daef E, Moharram A, Eldin SS, Elsherbiny N, Mohammed M. Evaluation of chromogenic media and seminested PCR in the identification of Candida species. Braz J Microbiol. 2014;45(1):255–262. doi:10.1590/S1517-8382201400500004024948942
  • Baixench MT, Taillandier A, Paugam A. Clinical and experimental evaluation of a new chromogenic medium (OCCA, Oxoid) for direct identification of Candida albicans, C. tropicalis and C. krusei. Mycoses. 2006;49(4):311–315. doi:10.1111/j.1439-0507.2006.01259.x16784446
  • Zhao L, de Hoog GS, Cornelissen A, et al. Prospective evaluation of the chromogenic medium CandiSelect 4 for differentiation and presumptive identification of non-Candida albicans Candida species. Fungal Biol. 2016;120(2):173–178. doi:10.1016/j.funbio.2015.09.00626781374
  • Szabó Z, Tóth B, Kovács M, et al. Evaluation of the new Micronaut-Candida system compared to the API ID32C method for yeast identification. J Clin Microbiol. 2008;46(5):1824–1825. doi:10.1128/JCM.02350-0718322057
  • Meurman O, Koskensalo A, Rantakokko-Jalava K. Evaluation of Vitek 2 for identification of yeasts in the clinical laboratory. Clin Microbiol Infect. 2006;12(6):591–593. doi:10.1111/j.1469-0691.2006.01409.x16700713
  • Hertel M, Hartwig S, Schütte E, et al. Identification of signature volatiles to discriminate Candida albicans, glabrata, krusei and tropicalis using gas chromatography and mass spectrometry. Mycoses. 2016;59(2):117–126. doi:10.1111/myc.1244226667499
  • Morace G, Sanguinetti M, Posteraro B, Lo Cascio G, Fadda G. Identification of various medically important Candida species in clinical specimens by PCR-restriction enzyme analysis. J Clin Microbiol. 1997;35(3):667–672. doi:10.1128/JCM.35.3.667-672.19979041409
  • Maiwald M, Kappe R, Sonntag HG. Rapid presumptive identification of medically relevant yeasts to the species level by polymerase chain reaction and restriction enzyme analysis. J Med Vet Mycol. 1994;32(2):115–122. doi:10.1080/026812194800001618064542
  • Rezazadeh E, Moazeni M, Sabokbar A. Use of cost effective and rapid molecular tools for identification of Candida species, opportunistic pathogens. Curr Med Mycol. 2016;2(3):1–4. doi:10.18869/acadpub.cmm.2.3.1
  • Carlotti A, Chaib F, Couble A, Bourgeois N, Blanchard V, Villard J. Rapid identification and fingerprinting of Candida krusei by PCR-based amplification of the species-specific repetitive polymorphic sequence CKRS-1. J Clin Microbiol. 1997;35(6):1337–1343. doi:10.1128/JCM.35.6.1337-1343.19979163440
  • Kanbe T, Horii T, Arishima T, Ozeki M, Kikuchi A. PCR-based identification of pathogenic Candida species using primer mixes specific to Candida DNA topoisomerase II genes. Yeast. 2002;19(11):973–989. doi:10.1002/yea.89212125054
  • Guo Y, Yang J-X, Liang G-W. A real-time PCR assay based on 5.8S rRNA gene (5.8S rDNA) for rapid detection of Candida from whole blood samples. Mycopathologia. 2016;181(5–6):405–413. doi:10.1007/s11046-015-9977-z26687075
  • Fidler G, Leiter E, Kocsube S, Biro S, Paholcsek M. Validation of a simplex PCR assay enabling reliable identification of clinically relevant Candida species. BMC Infect Dis. 2018;18(1):393. doi:10.1186/s12879-018-3283-630103686
  • Decat E, Van Mechelen E, Saerens B, et al. Rapid and accurate identification of isolates of Candida species by melting peak and melting curve analysis of the internally transcribed spacer region 2 fragment (ITS2-MCA). Res Microbiol. 2013;164(2):110–117. doi:10.1016/j.resmic.2012.10.01723142490
  • Sturaro LL, Gonoi T, Busso-Lopes AF, et al. Visible DNA microarray system as an adjunctive molecular test in identification of pathogenic fungi directly from a blood culture bottle. J Clin Microbiol. 2018;56(5):e01908–01917. doi:10.1128/JCM.01908-1729514940
  • Das S, Brown TM, Kellar KL, Holloway BP, Morrison CJ. DNA probes for the rapid identification of medically important Candida species using a multianalyte profiling system. FEMS Immunol Med Microbiol. 2006;46(2):244–250. doi:10.1111/j.1574-695X.2005.00031.x16487306
  • Freydiere AM, Buchaille L, Guinet R, Gille Y. Evaluation of latex reagents for rapid identification of Candida albicans and C. krusei colonies. J Clin Microbiology. 1997;35(4):877–880. doi:10.1128/JCM.35.4.877-880.1997
  • Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol. 2017;7:2173. doi:10.3389/fmicb.2016.0217328127295
  • Katiyar SK, Edlind TD. Identification and expression of multidrug resistance-related ABC transporter genes in. Candida Krusei. Med Mycol. 2001;39(1):109–116. doi:10.1080/mmy.39.1.109.11611270397
  • Ricardo E, Miranda IM, Faria-Ramos I, Silva RM, Rodrigues AG, Pina-Vaz C. In vivo and in vitro acquisition of resistance to voriconazole by Candida krusei. Antimicrob Agents Chemother. 2014;58(8):4604–4611. doi:10.1128/AAC.02603-1424867987
  • Gong J, Xiao M, Wang H, et al. Genetic differentiation, diversity, and drug susceptibility of Candida krusei. Front Microbiol. 2018;9:2717. doi:10.3389/fmicb.2018.0271730524386
  • Nguyen KT, Ta P, Hoang BT, et al. Anidulafungin is fungicidal and exerts a variety of postantifungal effects against Candida albicans, C. glabrata, C. parapsilosis, and C. krusei isolates. Antimicrob Agents Chemother. 2009;53(8):3347–3352. doi:10.1128/AAC.01480-0819364856
  • Forastiero A, Garcia-Gil V, Rivero-Menendez O, et al. Rapid development of Candida krusei echinocandin resistance during caspofungin therapy. Antimicrob Agents Chemother. 2015;59(11):6975–6982. doi:10.1128/AAC.01005-1526324281
  • Mendling W. Guideline: vulvovaginal candidosis (AWMF 015/072), S2k (excluding chronic mucocutaneous candidosis). Mycoses. 2015;58(S1):1–15. doi:10.1111/myc.12292
  • Locke JB, Almaguer AL, Donatelli JL, Bartizal KF. Time-kill kinetics of rezafungin (CD101) in vagina-simulative medium for fluconazole-susceptible and fluconazole-resistant Candida albicans and non-albicans Candida species. Infect Dis Obstet Gynecol. 2018;2018:7040498. doi:10.1155/2018/704049829681727
  • Mackie DP, Neill SD, Rodgers SP, Logan EF. Treatment of Candida krusei mastitis with sulphamethoxypyridazine. Vet Rec. 1987;120(2):48. doi:10.1136/vr.120.2.48
  • Schell WA, Jones AM, Garvey EP, Hoekstra WJ, Schotzinger RJ, Alexander BD. Fungal CYP51 inhibitors VT-1161 and VT-1129 exhibit strong in vitro activity against Candida glabrata and C. krusei isolates clinically resistant to azole and echinocandin antifungal compounds. Antimicrob Agents Chemother. 2017;61(3):e01817–01816. doi:10.1128/AAC.01817-1627956419
  • Domingues Bianchin M, Borowicz SM, da Rosa Monte Machado G, et al. Lipid core nanoparticles as a broad strategy to reverse fluconazole resistance in multiple Candida species. Colloids Surf B Biointerfaces. 2019;175:523–529. doi:10.1016/j.colsurfb.2018.12.01130579053
  • Wang T, Shao J, Da W, et al. Strong synergism of palmatine and fluconazole/itraconazole against planktonic and biofilm cells of Candida species and efflux-associated antifungal mechanism. Front Microbiol. 2018;9:2892. doi:10.3389/fmicb.2018.0289230559726
  • Patriota LL, Procópio TF, de Souza MF, et al. A Trypsin inhibitor from Tecoma stans leaves inhibits growth and promotes ATP depletion and lipid peroxidation in Candida albicans and Candida krusei. Front Microbiol. 2016;7:611. doi:10.3389/fmicb.2016.0061127199940
  • Bezerra CF, Rocha JE, Nascimento Silva MKD, et al. Analysis by UPLC-MS-QTOF and antifungal activity of guava (Psidium guajava L.). Food Chem Toxicol. 2018;119:122–132. doi:10.1016/j.fct.2018.05.02129751075
  • Souza-Moreira TM, Severi JA, Rodrigues ER, et al. Flavonoids from Plinia cauliflora (Mart.) Kausel (Myrtaceae) with antifungal activity. Nat Prod Res. 2019;33(17):2579–2582. doi:10.1080/14786419.2018.146082729620451
  • Moraes RC, Carvalho AR, Lana AJ, et al. In vitro synergism of a water insoluble fraction of Uncaria tomentosa combined with fluconazole and terbinafine against resistant non-Candida albicans isolates. Pharm Biol. 2017;55(1):406–415. doi:10.1080/13880209.2016.124263127931150
  • Min J, Lee YJ, Kim YA, et al. Lysophosphatidylcholine derived from deer antler extract suppresses hyphal transition in Candida albicans through MAP kinase pathway. Biochim Biophys Acta. 2001;1531(1–2):77–89. doi:10.1016/S1388-1981(01)00088-911278174
  • Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother. 2019;110:857–868. doi:10.1016/j.biopha.2018.12.00930557835