358
Views
10
CrossRef citations to date
0
Altmetric
Review

Carbapenemase Producing Gram-Negative Bacteria in Tunisia: History of Thirteen Years of Challenge

, , & ORCID Icon
Pages 4177-4191 | Published online: 23 Nov 2020

References

  • Klein E, Van Boeckel T, Martinez E, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):E3463–E3470. doi:10.1073/pnas.171729511529581252
  • Mölstad S, Löfmark S, Carlin K, et al. Lessons learnt during 20 years of the Swedish strategic programme against antibiotic resistance. Bull World Health Organ. 2017;95(11):764–773. doi:10.2471/BLT.16.18437429147057
  • Pulcini C, Gyssens I. How to educate prescribers in antimicrobial stewardship practices. Virulence. 2013;4(2):192–202. doi:10.4161/viru.2370623361336
  • Georgopapadakou N. Penicillin-binding proteins and bacterial resistance to beta-lactams. Antimicrob Agents Chemother. 1993;37(10):2045–2053. doi:10.1128/AAC.37.10.20458257121
  • Poole K. Resistance to β-lactam antibiotics. Cell Mol Life Sci. 2004;61(17):2200–2223. doi:10.1007/s00018-004-4060-915338052
  • Meek R, Vyas H, Piddock L. Nonmedical uses of antibiotics: time to restrict their use? PLoS Biol. 2015;13(10):e1002266. doi:10.1371/journal.pbio.100226626444324
  • Founou L, Founou R, Essack S. Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol. 2016;7:1881.27933044
  • Hawkey P, Livermore D. Carbapenem antibiotics for serious infections. BMJ. 2012;344:e3236. doi:10.1136/bmj.e323622654063
  • Walsh T. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents. 2010;36:S8–S14. doi:10.1016/S0924-8579(10)70004-2
  • Logan L, Weinstein R. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(suppl_1):S28–S36. doi:10.1093/infdis/jiw28228375512
  • Mugnier P, Poirel L, Naas T, et al. Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis. 2010;16(1):35–40.20031040
  • Ktari S, Arlet G, Mnif B, et al. Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-β-lactamase, CTX-M-15 extended-spectrum β-lactamase, and CMY-4 AmpC β-lactamase in a Tunisian university hospital. Antimicrob Agents Chemother. 2006;50(12):4198–4201. doi:10.1128/AAC.00663-0617015633
  • Berrazeg M, Diene S, Medjahed L, et al. New Delhi Metallo-beta-lactamase around the world: an eReview using Google Maps. Euro Surveill. 2014;19(20):pii=20809.
  • Battikh H, Harchay C, Dekhili A, et al. Clonal spread of colistin-resistant Klebsiella pneumoniae coproducing KPC and VIM carbapenemases in neonates at a Tunisian University Hospital. Microb Drug Resist. 2017;23(4):468–472. doi:10.1089/mdr.2016.017527802107
  • Ben Tanfous F, Alonso CA, Achour W, Ruiz-Ripa L, Torres C, Ben Hassen A. First description of KPC-2-producing Escherichia coli and ST15 OXA-48-positive Klebsiella pneumoniae in Tunisia. Microb Drug Resist. 2017;23(3):365–375. doi:10.1089/mdr.2016.009027754776
  • Yigit H, Queenan A, Anderson G, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–1161. doi:10.1128/AAC.45.4.1151-1161.200111257029
  • Grundmann H, Glasner C, Albiger B, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153–163. doi:10.1016/S1473-3099(16)30257-227866944
  • Robledo I, Aquino E, Vázquez G. Detection of the KPC gene in Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii during a PCR-based nosocomial surveillance study in Puerto Rico. Antimicrob Agents Chemother. 2011;55(6):2968–2970. doi:10.1128/AAC.01633-1021444702
  • Manenzhe R, Zar H, Nicol M, et al. The spread of carbapenemase-producing bacteria in Africa: a systematic review. J Antimicrob Chemother. 2015;70(1):23–40. doi:10.1093/jac/dku35625261423
  • Chouchani C, Marrakchi R, Ferchichi L, et al. VIM and IMP metallo‐β‐lactamases and other extended‐spectrum β‐lactamases in Escherichia coli and Klebsiella pneumoniae from environmental samples in a Tunisian hospital. APMIS. 2011;119(10):725–732. doi:10.1111/j.1600-0463.2011.02793.x21917010
  • Chouchani C, Marrakchi R, Henriques I, et al. Occurrence of IMP-8, IMP-10, and IMP-13 metallo-β-lactamases located on class 1 integrons and other extended-spectrum β-lactamases in bacterial isolates from Tunisian rivers. Scand J Infect Dis. 2013;45(2):95–103. doi:10.3109/00365548.2012.71771222992193
  • Dziri O, Alonso CA, Dziri R, et al. Metallo-β-lactamases and class D carbapenemases in south-east Tunisia: implication of mobile genetic elements in their dissemination. Int J Antimicrob Agents. 2018;52(6):871–877. doi:10.1016/j.ijantimicag.2018.06.00229909172
  • Ben Nasr A, Decré D, Compain F, et al. Emergence of NDM-1 in association with OXA-48 in Klebsiella pneumoniae from Tunisia. Antimicrob Agents Chemother. 2013;57(8):4089–4090. doi:10.1128/AAC.00536-1323752514
  • Messaoudi A, Haenni M, Mansour W, et al. ST147 NDM-1-producing Klebsiella pneumoniae spread in two Tunisian hospitals. J Antimicrob Chemother. 2017;72(1):315–316. doi:10.1093/jac/dkw40127659734
  • Jaidane N, Naas T, Oueslati S, et al. Whole-genome sequencing of NDM-1-producing ST85 Acinetobacter baumannii isolates from Tunisia. Int J Antimicrob Agents. 2018;52(6):916–921. doi:10.1016/j.ijantimicag.2018.05.01729857033
  • Kanzari L, Ferjani S, Saidani M, et al. First report of extensively-drug-resistant Proteus mirabilis isolate carrying plasmid-mediated blaNDM-1 in a Tunisian intensive care unit. Int J Antimicrob Agents. 2018;52(6):906–909. doi:10.1016/j.ijantimicag.2018.06.00929958975
  • Potron A, Poirel L, Rondinaud E, et al. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill. 2013;18(31):pii=20549. doi:10.2807/1560-7917.ES2013.18.31.20549
  • Evans BA, Amyes SGB. OXA β-Lactamases. Clin Microbial Rev. 2014;27(2):241–263. doi:10.1128/CMR.00117-13
  • Nasri E, Subirats J, Sànchez-Melsió A, et al. Abundance of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in wastewater effluents from Tunisian hospitals. Environ Pollut. 2017;229:371–374. doi:10.1016/j.envpol.2017.05.09528614760
  • Khan F, Söderquist B, Jass J. Prevalence and diversity of antibiotic resistance genes in Swedish aquatic environments impacted by household and hospital wastewater. Front Microbiol. 2019;10:688.31019498
  • Mani Y, Mansour W, Mammeri H, et al. KPC-3-producing ST167 Escherichia coli from mussels bought at a retail market in Tunisia. J Antimicrob Chemother. 2017;72(8):2403–2404. doi:10.1093/jac/dkx12428472479
  • Mani Y, Mansour W, Lupo A, et al. Spread of blaCTX-M-15-producing Enterobacteriaceae and OXA-23-producing Acinetobacter baumannii sequence type 2 in Tunisian seafood. Antimicrob Agents Chemother. 2018;62(9):e00727–18. doi:10.1128/AAC.00727-1829967023
  • Brahmi S, Touati A, Cadière A, et al. First description of two sequence type 2 Acinetobacter baumannii isolates carrying OXA-23 carbapenemase in Pagellus acarne fished from the Mediterranean Sea near Bejaia, Algeria. Antimicrob Agents Chemother. 2016;60(4):2513–2515.26787693
  • Lien L, Hoa N, Chuc N, et al. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use—a one year study from Vietnam. Int J Environ Res Public Health. 2016;13(6):pii=E588. doi:10.3390/ijerph13060588
  • Tindall BJ, Sutton G, Garrity GM. Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980). Int J Syst Evol Microbiol. 2017;67(2):502–504.27902205
  • Diene S, Rolain J. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014;20(9):831–838.24766097
  • Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother. 2011;55(11):5370–5373.21844325
  • Hammami S, Gautier V, Ghozzi R, et al. Diversity in VIM-2-encoding class 1 integrons and occasional blaSHV2a carriage in isolates of a persistent, multidrug-resistant Pseudomonas aeruginosa clone from Tunis. Clin Microbiol Infect. 2010;16(2):189–193. doi:10.1111/j.1469-0691.2009.03023.x19686278
  • Mansour W, Poirel L, Bettaieb D, et al. Metallo-β-lactamase-producing Pseudomonas aeruginosa isolates in Tunisia. Diagn Microbiol Infect Dis. 2009;64(4):458–461.19631102
  • Cheikh H, Domingues S, Silveira E, et al. Molecular characterization of carbapenemases of clinical Acinetobacter baumannii–calcoaceticus complex isolates from a University Hospital in Tunisia. 3 Biotech. 2018;8(7):297.
  • Wailan A, Paterson D. The spread and acquisition of NDM-1: a multifactorial problem. Expert Rev Anti Infect Ther. 2014;12(1):91–115.24308710
  • Charfi K, Mansour W, Khalifa A, et al. Emergence of OXA-204 β-lactamase in Tunisia. Diagn Microbiol Infect Dis. 2015;82(4):314–317. doi:10.1016/j.diagmicrobio.2015.04.00326001616
  • Mansour W, Haenni M, Saras E, et al. Outbreak of colistin-resistant carbapenemase-producing Klebsiella pneumoniae in Tunisia. J Glob Antimicrob Resist. 2017;10:88–94. doi:10.1016/j.jgar.2017.03.01728711559
  • Charfi-Kessis K, Mansour W, Ben Haj Khalifa A, et al. Multidrug-resistant Acinetobacter baumannii strains carrying the blaOXA-23 and the blaGES-11 genes in a neonatology center in Tunisia. Microb Pathog. 2014;74:20–24. doi:10.1016/j.micpath.2014.07.00325057763
  • Poirel L, Mansour W, Bouallegue O, et al. Carbapenem-resistant Acinetobacter baumannii isolates from Tunisia producing the OXA-58-like carbapenem-hydrolyzing oxacillinase OXA-97. Antimicrob Agents Chemother. 2008;52(5):1613–1617. doi:10.1128/AAC.00978-0718299404
  • Lahlaoui H, Bonnin R, Moussa M, et al. First report of OXA-232-producing Klebsiella pneumoniae strains in Tunisia. Diagn Microbiol Infect Dis. 2017;88(2):195–197.28341097
  • Maamar E, Ferjani S, Jendoubi A, et al. High prevalence of gut microbiota colonization with broad-spectrum cephalosporin resistant Enterobacteriaceae in a Tunisian intensive care unit. Front Microbiol. 2016;7:1859. doi:10.3389/fmicb.2016.0185927965626
  • Fritzenwanker M, Imirzalioglu C, Herold S, et al. Treatment options for carbapenem-resistant Gram-negative infections. Dtsch Arztbl Int. 2018;115(20–21):345–352.
  • Lee C, Lee J, Park K, et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895.27379038
  • Qin S, Qi H, Zhang Q, et al. Emergence of extensively drug-resistant Proteus mirabilis harboring a conjugative NDM-1 plasmid and a novel Salmonella genomic island 1 variant, SGI1-Z. Antimicrob Agents Chemother. 2015;59(10):6601–6604. doi:10.1128/AAC.00292-1526195511
  • Hajjej Z, Gharsallah H, Naija H, et al. Successful treatment of a Carbapenem-resistant Klebsiella pneumoniae carrying blaOXA-48, blaVIM-2, blaCMY-2 and blaSHV-with high dose combination of imipenem and amikacin. IDCases. 2016;4:10–12. doi:10.1016/j.idcr.2016.01.00327051575
  • Mansour W, Poirel L, Bettaieb D, et al. Dissemination of OXA-23–producing and carbapenem-resistant Acinetobacter baumannii in a University Hospital in Tunisia. Microb Drug Resist. 2008;14(4):289–292.19018672
  • Ktari S, Mnif B, Znazen A, et al. Diversity of β-lactamases in Pseudomonas aeruginosa isolates producing metallo-β-lactamase in two Tunisian hospitals. Microb Drug Resist. 2011;17(1):25–30. doi:10.1089/mdr.2010.010421190476
  • Hammami S, Boutiba-Ben Boubaker I, Ghozzi R, et al. Nosocomial outbreak of imipenem-resistant Pseudomonas aeruginosa producing VIM-2 metallo-β-lactamase in a kidney transplantation unit. Diagn Pathol. 2011;6:106. doi:10.1186/1746-1596-6-10622035284
  • Belotti P, Thabet L, Laffargue A, et al. Description of an original integron encompassing blaVIM-2, qnrVC1 and genes encoding bacterial group II intron proteins in Pseudomonas aeruginosa. J Antimicrob Chemother. 2015;70(8):2237–2240. doi:10.1093/jac/dkv10325977399
  • Ben Helal R, Dziri R, Chedly M, et al. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae in a Tunisian Hospital. Microb Drug Resist. 2018;24(9):1361–1367.29596032
  • Jaidane N, Bonnin R, Mansour W, et al. Genomic insights into colistin-resistant Klebsiella pneumoniae from a Tunisian teaching hospital. Antimicrob Agents Chemother. 2018;62(2):pii=e01601–17.
  • Mansour W, Grami R, Jaidane N, et al. Epidemiology and Whole-Genome analysis of NDM-1-producing Klebsiella pneumoniae KP3771 from Tunisia. Microb Drug Resist. 2019;25(5):644–651. doi:10.1089/mdr.2018.020430614778
  • Hammami S, Dahdeh C, Mamlouk K, et al. Rectal carriage of extended-spectrum beta-lactamase and carbapenemase producing Gram-negative bacilli in intensive care units in Tunisia. Microb Drug Resist. 2017;23(6):695–702. doi:10.1089/mdr.2016.020528099062
  • Hamzaoui Z, Ocampo-Sosa A, Maamar E, et al. An outbreak of NDM-1-producing Klebsiella pneumoniae, associated with OmpK35 and OmpK36 porin loss in Tunisia. Microb Drug Resist. 2018;24(8):1137–1147. doi:10.1089/mdr.2017.016529373087
  • Maamar E, Alonso CA, Ferjani S, et al. NDM-1-and OXA-23-producing Acinetobacter baumannii isolated from intensive care unit patients in Tunisia. Int J Antimicrob Agents. 2018;52(6):910–915.29665444
  • Ktari S, Mnif B, Louati F, et al. Spread of Klebsiella pneumoniae isolates producing OXA-48 β-lactamase in a Tunisian university hospital. J Antimicrob Chemother. 2011;66(7):1644–1646. doi:10.1093/jac/dkr18121565807
  • Lahlaoui H, Poirel L, Barguellil F, et al. Carbapenem-hydrolyzing class D β-lactamase OXA-48 in Klebsiella pneumoniae isolates from Tunisia. Eur J Clin Microbiol Infect Dis. 2012;31(6):937–939.21915739
  • Saïdani M, Hammami S, Kammoun A, et al. Emergence of carbapenem-resistant OXA-48 carbapenemase-producing Enterobacteriaceae in Tunisia. J Med Microbiol. 2012;61(12):1746–1749. doi:10.1099/jmm.0.045229-022918869
  • Mnif B, Ktari S, Chaari A, et al. Nosocomial dissemination of Providencia stuartii isolates carrying blaOXA-48, blaPER-1, blaCMY-4 and qnrA6 in a Tunisian hospital. J Antimicrob Chemother. 2013;68(2):329–332.23014719
  • Ouertani R, Ben Jomàa-Jemili M, Gharsa H, et al. Prevalence of a new variant OXA-204 and OXA-48 carbapenemases plasmids encoded in Klebsiella pneumoniae clinical isolates in Tunisia. Microb Drug Resist. 2018;24(2):142–149. doi:10.1089/mdr.2016.023628737463
  • Ben Tanfous F, Achour W, Raddaoui A, et al. Molecular characterisation and epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates from immunocompromised patients in Tunisia. J Glob Antimicrob Resist. 2018;13:154–160.29309948
  • Tanfous F, Raddaoui A, Chebbi Y, et al. Epidemiology and molecular characterisation of colistin-resistant Klebsiella pneumoniae isolates from immunocompromised patients in Tunisia. Int J Antimicrob Agents. 2018;52(6):861–865. doi:10.1016/j.ijantimicag.2018.08.02230176353
  • Ouertani R, Limelette A, Guillard T, et al. First report of nosocomial infection caused by Klebsiella pneumoniae ST147 producing OXA-48 and VEB-8 β-lactamases in Tunisia. J Glob Antimicrob Resist. 2016;4:53–56. doi:10.1016/j.jgar.2015.10.00227436394
  • Mathlouthi N, Al-Bayssari C, El Salabi A, et al. Carbapenemases and extended-spectrum β-lactamases producing Enterobacteriaceae isolated from Tunisian and Libyan hospitals. J Infect Dev Ctries. 2016;10(7):718–727. doi:10.3855/jidc.742627482803
  • Grami R, Mansour W, Ben Haj Khalifa A, et al. Emergence of ST147 Klebsiella pneumoniae producing OXA-204 carbapenemase in a University Hospital, Tunisia. Microb Drug Resist. 2016;22(2):137–140. doi:10.1089/mdr.2014.027826447939
  • Ktari S, Le Hello S, Ksibi B, et al. Carbapenemase-producing Salmonella enterica serotype Kentucky St198, North Africa. J Antimicrob Chemother. 2015;70(12):3405–3407.26377865
  • Mathlouthi N, Ben Lamine Y, Somai R, et al. Incidence of OXA-23 and OXA-58 carbapenemases coexpressed in clinical isolates of Acinetobacter baumannii in Tunisia. Microb Drug Resist. 2018;24(2):136–141. doi:10.1089/mdr.2016.030628691891
  • Hammami S, Ghozzi R, Saidani M, et al. Carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-23 in Tunisia. Tunis Med. 2011;89(7):638–643.21780040
  • Chihi H, Bonnin R, Bourouis A, et al. GES-11-producing Acinetobacter baumannii clinical isolates from Tunisian hospitals: long-term dissemination of GES-type carbapenemases in North Africa. J Glob Antimicrob Resist. 2016;5:47–50. doi:10.1016/j.jgar.2016.03.00527436466
  • Jaidane N, Naas T, Mansour W, et al. Genomic analysis of in vivo acquired resistance to colistin and rifampicin in Acinetobacter baumannii. Int J Antimicrob Agents. 2018;51(2):266–269. doi:10.1016/j.ijantimicag.2017.10.01629127051