130
Views
3
CrossRef citations to date
0
Altmetric
Original Research

iTRAQ-Based Proteomics Reveals Potential Anti-Virulence Targets for ESBL-Producing Klebsiella pneumoniae

, , , &
Pages 2891-2899 | Published online: 19 Aug 2020

References

  • Cantas L, Shah SQ, Cavaco LM, et al. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol. 2013;4:96. doi:10.3389/fmicb.2013.0009623675371
  • Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov. 2010;9(2):117–128. doi:10.1038/nrd301320081869
  • Wu HJ, Wang AH, Jennings MP. Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol. 2008;12(1):93–101. doi:10.1016/j.cbpa.2008.01.02318284925
  • Tseng CP, Wu HS, Wu TH, Lin YT, Fung CP. Clinical characteristics and outcome of patients with community-onset Klebsiella pneumoniae bacteremia requiring intensive care. J Microbiol Immunol Infect. 2013;46(3):217–223. doi:10.1016/j.jmii.2012.06.00122832028
  • Lin HA, Huang YL, Yeh KM, Siu LK, Lin JC, Chang FY. Regulator of the mucoid phenotype A gene increases the virulent ability of extended-spectrum beta-lactamase-producing serotype non-K1/K2 Klebsiella pneumonia. J Microbiol Immunol Infect. 2016;49(4):494–501. doi:10.1016/j.jmii.2014.08.02325442871
  • Sahly H, Aucken H, Benedi VJ, et al. Increased serum resistance in Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2004;48(9):3477–3482. doi:10.1128/AAC.48.9.3477-3482.200415328114
  • Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–362. doi:10.1038/nmeth.132219377485
  • Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80(3):629–661.27307579
  • Schiraldi C, Di Lernia I, De Rosa M. Trehalose production: exploiting novel approaches. Trends Biotechnol. 2002;20(10):420–425. doi:10.1016/S0167-7799(02)02041-312220904
  • Vanaporn M, Sarkar-Tyson M, Kovacs-Simon A, et al. Trehalase plays a role in macrophage colonization and virulence of Burkholderia pseudomallei in insect and mammalian hosts. Virulence. 2017;8(1):30–40. doi:10.1080/21505594.2016.119931627367830
  • Tournu H, Fiori A, Van Dijck P, Goldman WE. Relevance of trehalose in pathogenicity: some general rules, yet many exceptions. PLoS Pathog. 2013;9(8):e1003447. doi:10.1371/journal.ppat.100344723966851
  • Chen JH, Siu LK, Fung CP, et al. Contribution of outer membrane protein K36 to antimicrobial resistance and virulence in Klebsiella pneumoniae. J Antimicrob Chemother. 2010;65(5):986–990. doi:10.1093/jac/dkq05620211860
  • Shin SY, Bae IK, Kim J, et al. Resistance to carbapenems in sequence type 11 Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J Med Microbiol. 2012;61(Pt 2):239–245. doi:10.1099/jmm.0.037036-021940650
  • Tsai Y-K, Fung C-P, Lin J-C, et al. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother. 2011;55(4):1485–1493. doi:10.1128/AAC.01275-1021282452
  • Hernandez NE, Tereschuk ML, Abdala LR. Antimicrobial activity of flavonoids in medicinal plants from Tafi del Valle (Tucuman, Argentina). J Ethnopharmacol. 2000;73(1–2):317–322. doi:10.1016/S0378-8741(00)00295-611025172
  • Zhang Y, Jiang X, Wang Y, et al. Contribution of beta-lactamases and porin proteins OmpK35 and OmpK36 to carbapenem resistance in clinical isolates of KPC-2-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2014;58(2):1214–1217. doi:10.1128/AAC.02045-1224277031
  • Hamzaoui Z, Ocampo-Sosa A, Fernandez Martinez M, et al. Role of association of OmpK35 and OmpK36 alteration and blaESBL and/or blaAmpC genes in conferring carbapenem resistance among non-carbapenemase-producing Klebsiella pneumoniae. Int J Antimicrob Agents. 2018;52(6):898–905. doi:10.1016/j.ijantimicag.2018.03.02029621592
  • Csiszovszki Z, Krishna S, Orosz L, Adhya S, Semsey S, Hendrix R. Structure and function of the D-galactose network in enterobacteria. mBio. 2011;2(4):e00053–e00011. doi:10.1128/mBio.00053-1121712421
  • Lee SJ, Trostel A, Le P, Harinarayanan R, Fitzgerald PC, Adhya S. Cellular stress created by intermediary metabolite imbalances. Proc Natl Acad Sci U S A. 2009;106(46):19515–19520. doi:10.1073/pnas.091058610619887636
  • Zou Y, Feng S, Xu C, et al. The role of galU and galE of Haemophilus parasuis SC096 in serum resistance and biofilm formation. Vet Microbiol. 2013;162(1):278–284. doi:10.1016/j.vetmic.2012.08.00622981816
  • Chai Y, Beauregard PB, Vlamakis H, Losick R, Kolter R, Greenberg EP. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. mBio. 2012;3(4):e00184–e00112. doi:10.1128/mBio.00184-1222893383
  • Niou YK, Wu WL, Lin LC, et al. Role of galE on biofilm formation by Thermus spp. Biochem Biophys Res Commun. 2009;390(2):313–318. doi:10.1016/j.bbrc.2009.09.12019800315
  • Lawlor MS, Handley SA, Miller VL. Comparison of the host responses to wild-type and cpsB mutant Klebsiella pneumoniae infections. Infect Immun. 2006;74(9):5402–5407. doi:10.1128/IAI.00244-0616926436
  • Shu HY, Fung CP, Liu YM, et al. Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. Microbiology. 2009;155(Pt 12):4170–4183. doi:10.1099/mic.0.029017-019744990
  • Arakawa Y, Wacharotayankun R, Nagatsuka T, Ito H, Kato N, Ohta M. Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain chedid. J Bacteriol. 1995;177(7):1788–1796. doi:10.1128/JB.177.7.1788-1796.19957896702
  • Pan YJ, Lin TL, Chen CT, et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep. 2015;5:15573. doi:10.1038/srep1557326493302
  • Wu MC, Lin TL, Hsieh PF, Yang HC, Wang JT. Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS One. 2011;6(8):e23500. doi:10.1371/journal.pone.002350021858144
  • Kong Q, Beanan JM, Olson R, et al. Biofilm formed by a hypervirulent (hypermucoviscous) variant of Klebsiella pneumoniae does not enhance serum resistance or survival in an in vivo abscess model. Virulence. 2012;3(3):309–318. doi:10.4161/viru.2038322546898
  • Roilides E, Simitsopoulou M, Katragkou A, Walsh TJ. How biofilms evade host defenses. Microbiol Spectr. 2015;3(3). doi:10.1128/microbiolspec.MB-0012-2014
  • Verma A, Bhani D, Tomar V, Bachhiwal R, Yadav S. Differences in bacterial colonization and biofilm formation property of uropathogens between the two most commonly used indwelling urinary catheters. J Clin Diagn Re. 2016;10(6):PC01–PC03. doi:10.7860/JCDR/2016/20486.7939