234
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Prevalence and Molecular Typing of Colistin-Resistant Pseudomonas aeruginosa (CRPA) Among β-Lactamase-Producing Isolates: A Study Based on High-Resolution Melting Curve Analysis Method

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2943-2955 | Published online: 21 Aug 2020

References

  • Peymani A, Naserpour-Farivar T, Zare E, Azarhoosh KH. Distribution of bla(TEM), bla(SHV), and bla(CTX-M) genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals, Iran. J Prev Med Hyg. 2017;58(2):E155–E160.28900355
  • Kaur A, Singh S. Prevalence of Extended Spectrum Betalactamase (ESBL) and Metallobetalactamase (MBL) producing pseudomonas aeruginosa and acinetobacter baumannii isolated from various clinical samples. J Pathog. 2018;2018:7. doi:10.1155/2018/6845985
  • Pattnaik D, Panda SS, Singh N, Sahoo S, Mohapatra I, Jena J. Multidrug resistant, extensively drug resistant and pan drug resistant gram negative bacteria at a tertiary care centre in Bhubaneswar. ijcmph. 2019;6(2):6. doi:10.18203/2394-6040.ijcmph20190170
  • Kosykowska E, Dzieciątkowski T, Mlynarczyk G. Rapid detection of NDM, VIM, KPC and IMP carbapenemases by real-time PCR. J Bacteriol Parasitol. 2016;7(06):6. doi:10.4172/2155-9597.1000299
  • Guzvinec M, Izdebski R, Butic I, et al. Sequence types 235, 111, and 132 predominate among multidrug-resistant pseudomonas aeruginosa clinical isolates in Croatia. Antimicrob Agents Chemother. 2014;58(10):6277–6283. doi:10.1128/AAC.03116-1425070098
  • Wi YM, Choi J-Y, Lee J-Y, et al. Emergence of colistin resistance in Pseudomonas aeruginosa ST235 clone in South Korea. Int J Antimicrob Agents. 2017;49(6):767–769. doi:10.1016/j.ijantimicag.2017.01.02328392440
  • Roschanski N, Fischer J, Guerra B, Roesler U. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS One. 2014;9(7):e100956. doi:10.1371/journal.pone.010095625033234
  • Nang SC, Li J, Velkov T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit Rev Microbiol. 2019;45(2):131–161. doi:10.1080/1040841x.2018.149290231122100
  • Lee J-Y, Ko KS. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis. 2014;78(3):271–276. doi:10.1016/j.diagmicrobio.2013.11.02724412662
  • Hameed F, Khan MA, Muhammad H, Sarwar T, Bilal H, Rehman TU. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan. Rev Soc Bras Med Trop. 2019;52. doi:10.1590/0037-8682-0237-2019
  • Chabou S, Leangapichart T, Okdah L, Le Page S, Hadjadj L, Rolain JM. Real-time quantitative PCR assay with Taqman((R)) probe for rapid detection of MCR-1 plasmid-mediated colistin resistance. New Microbes New Infect. 2016;13:71–74. doi:10.1016/j.nmni.2016.06.01727489722
  • Tahmasebi H, Dehbashi S, Arabestani MR. New approach to identify colistin-resistant Pseudomonas aeruginosa by high-resolution melting curve analysis assay. Lett Appl Microbiol. 2020;70(4):290–299. doi:10.1111/lam.1327031883350
  • Landolt P, Stephan R, Scherrer S. Development of a new High Resolution Melting (HRM) assay for identification and differentiation of Mycobacterium tuberculosis complex samples. Sci Rep. 2019;9(1):1850. doi:10.1038/s41598-018-38243-630755639
  • Tahmasebi H, Dehbashi S, Arabestani MR. High resolution melting curve analysis method for detecting of carbapenemases producing pseudomonas aeruginosa. JKIMSU. 2018;7(4):70–77.
  • Dehbashi S, Tahmasebi H, Arabestani MR. The clinical utility of analysis high resolution melting curve assay for simultaneous identification of methicillin and mupirocin resistant in coagulase-negative Staphylococci. Clin Lab. 2019;65(10/2019):10. doi:10.7754/Clin.Lab.2019.190314
  • Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—10th Ed. M07-A11. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
  • Teklu DS, Negeri AA, Legese MH, Bedada TL, Woldemariam HK, Tullu KD. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control. 2019;8(1):39. doi:10.1186/s13756-019-0488-430815254
  • Osei Sekyere J. Mcr colistin resistance gene: a systematic review of current diagnostics and detection methods. MicrobiologyOpen. 2019;8(4):e00682–e. doi:10.1002/mbo3.68229974640
  • Lund M, Petersen MB, Jorgensen AL, Paulmann D, Wang M. Rapid real-time PCR for the detection of IMP, NDM, VIM, KPC and OXA-48 carbapenemase genes in isolates and spiked stool samples. Diagn Microbiol Infect Dis. 2018;92(1):8–12. doi:10.1016/j.diagmicrobio.2018.04.00229776709
  • Cherkaoui A, Emonet S, Renzi G, Schrenzel J. Characteristics of multidrug-resistant Acinetobacter baumannii strains isolated in Geneva during colonization or infection. Ann Clin Microbiol Antimicrob. 2015;14(1):42. doi:10.1186/s12941-015-0103-326361784
  • Roschanski N, Fischer J, Guerra B, Roesler U, Bereswill S. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS One. 2014;9(7):e100956–e. doi:10.1371/journal.pone.010095625033234
  • Teixeira B, Rodulfo H, Carreño N, Guzmán M, Salazar E, De Donato M. Aminoglycoside resistance genes in pseudomonas aeruginosa isolates from cumana, venezuela. Rev Inst Med Trop Sao Paulo. 2016;58:13. doi:10.1590/S1678-994620165801327007556
  • Rahim K, Saleha S, Basit A, et al. Pseudomonas aeruginosa as a powerful biofilm producer and positive action of amikacin against isolates from chronic wounds. Jundishapur J Microbiol. 2017;10(10):e57564. doi:10.5812/jjm.57564
  • Yayan J, Ghebremedhin B, Rasche K, Webber MA. Antibiotic resistance of pseudomonas aeruginosa in pneumonia at a single University Hospital center in germany over a 10-year period. PLoS One. 2015;10(10):e0139836. doi:10.1371/journal.pone.013983626430738
  • Sala A, Di Ianni F, Pelizzone I, et al. The prevalence of Pseudomonas aeruginosa and multidrug resistant Pseudomonas aeruginosa in healthy captive ophidian. PeerJ. 2019;7:e6706–e. doi:10.7717/peerj.670630997288
  • Dou Y, Huan J, Guo F, Zhou Z, Shi Y. Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J Int Med Res. 2017;45(3):1124–1137. doi:10.1177/030006051770357328443385
  • Ribeiro PCS, Monteiro AS, Marques SG, et al. Phenotypic and molecular detection of the blaKPC gene in clinical isolates from inpatients at hospitals in São Luis, MA, Brazil. BMC Infect Dis. 2016;16(1):737. doi:10.1186/s12879-016-2072-327927163
  • Farajzadeh Sheikh A, Shahin M, Shokoohizadeh L, Halaji M, Shahcheraghi F, Ghanbari F. Molecular epidemiology of colistin-resistant Pseudomonas aeruginosa producing NDM-1 from hospitalized patients in Iran. Iran J Basic Med Sci. 2019;22(1):38–42. doi:10.22038/ijbms.2018.29264.709630944706
  • Kotwal A, Biswas D, Kakati B, Singh M. ESBL and MBL in cefepime resistant pseudomonas aeruginosa: an update from a Rural Area in Northern India. J Clin Diagn Res. 2016;10(4):DC09–DC11. doi:10.7860/JCDR/2016/18016.7612
  • von Tippelskirch P, Gölz G, Projahn M, et al. Prevalence and quantitative analysis of ESBL and AmpC beta-lactamase producing Enterobacteriaceae in broiler chicken during slaughter in Germany. Int J Food Microbiol. 2018;281:82–89. doi:10.1016/j.ijfoodmicro.2018.05.02229890401
  • Beyene D, Bitew A, Fantew S, Mihret A, Evans M, Ruiz-Rodriguez M. Multidrug-resistant profile and prevalence of extended spectrum β-lactamase and carbapenemase production in fermentative gram-negative bacilli recovered from patients and specimens referred to National Reference Laboratory, Addis Ababa, Ethiopia. PLoS One. 2019;14(9):e0222911–e. doi:10.1371/journal.pone.022291131553773
  • Bajpai T, Pandey M, Varma M, Bhatambare G. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med. 2017;7(1):12–16. doi:10.4103/2231-0770.19750828182026
  • Büchler AC, Gehringer C, Widmer AF, Egli A, Tschudin-Sutter S. Risk factors for colistin-resistant Enterobacteriaceae in a low-endemicity setting for carbapenem resistance – a matched case–control study. Eurosurveillance. 2018;23(30):1700777. doi:10.2807/1560-7917.ES.2018.23.30.1700777
  • Cienfuegos AV, Ocampo AM, Higuita LF, Jiménez N. Risk factors for the acquisition of colistin and carbapenem-resistant Klebsiella pneumoniae in Medellín-Colombia, an endemic region for carbapenem resistance. Int J Infect Dis. 2016;53:39–40. doi:10.1016/j.ijid.2016.11.10627810520
  • Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168. doi:10.1016/s1473-3099(15)00424-726603172
  • Tran DM, Larsson M, Olson L, et al. High prevalence of colonisation with carbapenem-resistant Enterobacteriaceae among patients admitted to Vietnamese hospitals: risk factors and burden of disease. J Infect. 2019;79(2):115–122. doi:10.1016/j.jinf.2019.05.01331125639
  • Bontron S, Poirel L, Nordmann P. Real-time PCR for detection of plasmid-mediated polymyxin resistance (mcr-1) from cultured bacteria and stools. J Antimicrob Chemother. 2016;71(8):2318–2320. doi:10.1093/jac/dkw13927121402
  • Daniels JB, Campbell D, Boyd S, et al. Development and validation of a clinical laboratory improvement amendments-compliant multiplex real-time PCR assay for detection of mcr genes. Microb Drug Resist. 2019;25(7):991–996. doi:10.1089/mdr.2018.041730942652
  • Bentaleb EM, El Messaoudi MD, Abid M, et al. Plasmid-based high-resolution melting analysis for accurate detection of rpoB mutations in Mycobacterium tuberculosis isolates from Moroccan patients. BMC Infect Dis. 2017;17(1):548. doi:10.1186/s12879-017-2666-428784099
  • Otaguiri ES, Morguette AEB, Morey AT, et al. Development of a melting-curve based multiplex real-time PCR assay for simultaneous detection of Streptococcus agalactiae and genes encoding resistance to macrolides and lincosamides. BMC Pregnancy Childbirth. 2018;18(1):126. doi:10.1186/s12884-018-1774-529724169