102
Views
4
CrossRef citations to date
0
Altmetric
Original Research

The Value of the inhA Mutation Detection in Predicting Ethionamide Resistance Using Melting Curve Technology

, , , , , & show all
Pages 329-334 | Published online: 29 Jan 2021

References

  • World Health Organization. Global tuberculosis report. 2020.
  • Vilchèze C, Jacobs JR. WR. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr. 2014;2(4):MGM2–2013. doi:10.1128/microbiolspec.MGM2-0014-2013
  • Vadwai V, Ajbani K, Jose M, et al. Can inhA mutation predict ethionamide resistance? Int J Tuberc Lung Dis. 2013;17(1):129–130. doi:10.5588/ijtld.12.051123146620
  • Niehaus AJ, Mlisana K, Gandhi NR, Mathema B, Brust JC. High prevalence of inhA promoter mutations among patients with drug-resistant tuberculosis in KwaZulu-Natal, South Africa. PLoS One. 2015;10(9):e0135003. doi:10.1371/journal.pone.013500326332235
  • World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment - drug-resistant tuberculosis treatment. 2020 Availble from: https://www.who.int/tb/publications/global_report/TB20_Exec_Sum_20201014.pdf. Accessed 1223, 2020.
  • Tuberculosis society of Chinese Medical Association. Chinese expert consensus on multidrug-resistant tuberculosis and Rifampicin-resistant tuberculosis treatment. Chin J Tuberc Respir. 2019;42(10):733–749.
  • Lee JH, Jo KW, Shim TS. Correlation between genoType MTBDRplus assay and phenotypic susceptibility test for prothionamide in patients with genotypic isoniazid resistance. Tuberc Respir Dis (Seoul). 2019;82(2):143–150. doi:10.4046/trd.2018.002730302956
  • Pang Y, Dong H, Tan Y, et al. Rapid diagnosis of MDR and XDR tuberculosis with the MeltPro TB assay in China. Sci Rep. 2016;6:25330. doi:10.1038/srep2533027149911
  • Haeili M, Fooladi AI, Bostanabad SZ, Sarokhalil DD, Siavoshi F, Feizabadi MM. Rapid screening of rpoB and katG mutations in Mycobacterium tuberculosis isolates by high-resolution melting curve analysis. Indian J Med Microbiol. 2014;32(4):398–403. doi:10.4103/0255-0857.14224525297024
  • Darban-Sarokhalil D, Nasiri MJ, Fooladi AA, Heidarieh P, Feizabadi MM. Rapid detection of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis using TaqMan allelic discrimination. Osong Public Health Res Perspect. 2016;7(2):127–130. doi:10.1016/j.phrp.2016.01.00327169012
  • Basic Professional Committee of China National Defense Tuberculosis Association. TB diagnostic laboratory test procedures. Beijing: China Education Press; 2006.
  • Wang G, Dong W, Lan T, et al. Diagnostic accuracy evaluation of the conventional and molecular tests for Spinal Tuberculosis in a cohort, head-to-head study. Emerg Microbes Infect. 2018;7(1):109. doi:10.1038/s41426-018-0114-129921972
  • Jou R, Lee WT, Kulagina EV, et al. Redefining MDR-TB: comparison of Mycobacterium tuberculosis clinical isolates from Russia and Taiwan. Infect Genet Evol. 2019;72:141–146. doi:10.1016/j.meegid.2018.12.03130593924
  • Morlock GP, Metchock B, Sikes D, Crawford JT, Cooksey RC. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2003;47(12):3799–3805. doi:10.1128/AAC.47.12.3799-3805.200314638486
  • Rueda J, Realpe T, Mejia GI, et al. Genotypic analysis of genes associated with independent resistance and cross-resistance to isoniazid and ethionamide in Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother. 2015;59(12):7805–7810. doi:10.1128/AAC.01028-1526369965
  • Song YH, Wang GR, Huo FM, et al. Correlation analysis of inhA gene mutation in MTB and propioniazid resistance. Chin J Def Consumpt. 2018;40(8):821–824.
  • Liu YP, Wang J, Zhang JX, et al. Detection of clinical isolates of Mycobacterium tuberculosis resistant to isoniazid and propioniazid and study on related gene mutation. Chin J Def Consumpt. 2016;38(9):718–721.
  • Chen HF, Huang QS, Gao AX, et al. Observation on the sensitivity of mDR-MYCObacterium tuberculosis to second-line anti-tuberculosis drugs. J Nanjing Med Univ. 2014;34(1):69–71.
  • Li XD. Analysis of resistance of 174 mDR-Mycobacterium tuberculosis strains to second-line anti-tuberculosis drugs. Int J Lab Med. 2014;13:1732–1733,1748.
  • Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int J Tuberc Lung Dis. 2015;19(11):1276–1289. doi:10.5588/ijtld.15.038926467578
  • Tan Y, Su B, Zheng H, Song Y, Wang Y, Pang Y. Molecular characterization of prothionamide-resistant mycobacterium tuberculosis isolates in Southern China. Front Microbiol. 2017;8:2358. doi:10.3389/fmicb.2017.0235829250048
  • Organization W.H. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide. 2018.
  • Malinga L, Brand J, Jansen van Rensburg C, Cassell G, van der Walt M. Investigation of isoniazid and ethionamide cross-resistance by whole genome sequencing and association with poor treatment outcomes of multidrug-resistant tuberculosis patients in South Africa. Int J Mycobacteriol. 2016;5(Suppl 1):S36–S37. doi:10.1016/j.ijmyco.2016.11.02028043598
  • Jia LL, Gao F, Zhang S. Relationship between high isoniazid resistance and propioniazid resistance.Inner. Mongolia Medical J. 2015;47(12):64.
  • Machado D, Perdigão J, Ramos J, et al. High-level resistance to isoniazid and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. J Antimicrob Chemother. 2013;68(8):1728–1732. doi:10.1093/jac/dkt09023539241