7,373
Views
110
CrossRef citations to date
0
Altmetric
Review

Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 3255-3265 | Published online: 22 Sep 2020

References

  • Atoum MF, Akel H, Battikhi MN. Comparison of PCR and disc diffusion methods in detecting methicillin resistance among Staphylococcus species from nosocomial infections. Saudi Med J. 2003;24:1410–1412.14710298
  • Weese JS, van Duijkeren E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary gmedicine. Vet Microbiol. 2010;140:418–429. doi:10.1016/j.vetmic.2009.01.03919246166
  • Aklilu E, Zunita Z, Hassan L, Chen H. Phenotypic and genotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolated from dogs and cats at University Veterinary Hospital, Universiti Putra Malaysia. Trop Biomed. 2010;27:483–492.21399590
  • Azeez-Akande O. Global trend of methicillin-resistant Staphylococcus aureus and emerging challenges for control. African J Clin Exp Microbiol. 2010;11.
  • Alaklobi F, Aljobair F, Alrashod A, et al. The prevalence of community-associated methicillin-resistant Staphylococcus aureus among outpatient children in a tertiary hospital: a prospective observational study in Riyadh, Saudi Arabia. Intl J Pediatr Adolesc Med. 2015;2:136–140. doi:10.1016/j.ijpam.2015.09.001
  • Quinn P, Carter M, Markey B, Carter G. Mastitis In: Clinical Veterinary Microbiology. London: Wolfe Publishing; 1994:327–344.
  • Elsayed MS, Aem E-B, Dawoud MA. Phenotypic and genotypic detection of virulence factors of Staphylococcus aureus isolated from clinical and subclinical mastitis in cattle and water buffaloes from different farms of Sadat City in Egypt. Vet World. 2015;8:1051. doi:10.14202/vetworld.2015.1051-105827047197
  • Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31(4).
  • Licitra G. Etymologia: Staphylococcus. Emerg Infect Dis. 2013;19:1553. doi:10.3201/eid1909.ET1909
  • Scherrer D, Corti S, Muehlherr J, Zweifel C, Stephan R. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from raw bulk-tank milk samples of goats and sheep. Vet Microbiol. 2004;101:101–107. doi:10.1016/j.vetmic.2004.03.01615172692
  • Freeman-Cook L, Freeman-Cook KD, Alcamo IE. Staphylococcus Aureus Infections. Infobase Publishing; 2006.
  • Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem. 2015;84:577–601. doi:10.1146/annurev-biochem-060614-03451626034890
  • Gajdács M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics. 2019;8:52. doi:10.3390/antibiotics8020052
  • Kitti T, Boonyonying K, Sitthisak S. Prevalence of methicillin-resistant Staphylococcus aureus among university students in Thailand. Southeast Asian J Trop Med Public Health. 2011;42:1498.22299421
  • Prenafeta A, Sitjà M, Holmes M, Paterson G. Biofilm production characterization of mecA and mecC methicillin-resistant Staphylococcus aureus isolated from bovine milk in Great Britain. J Dairy Sci. 2014;97:4838–4841. doi:10.3168/jds.2014-798624881796
  • Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H, Watanabe S. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol. 1991;29:2240–2244. doi:10.1128/JCM.29.10.2240-2244.19911939577
  • Gajdács M. The concept of an ideal antibiotic: implications for drug design. Molecules. 2019;24:892. doi:10.3390/molecules24050892
  • Pantosti A, Venditti M. What is MRSA? Eur Respir J. 2009;34:1190–1196. doi:10.1183/09031936.0000770919880619
  • Gajdács M, Zsoldiné Urbán E. Epidemiology and resistance trends of Staphylococcus aureus isolated from vaginal samples: a 10-year retrospective study in Hungary. Acta Dermatovenerol Alp Pannonica Adriat. 2019;28:143–147. doi:10.15570/actaapa.2019.3531855266
  • Persoons D, Van Hoorebeke S, Hermans K, et al. Methicillin-resistant Staphylococcus aureus in poultry. Emerg Infect Dis. 2009;15:452. doi:10.3201/eid1503.08069619239762
  • Devriese L, Van Damme L, Fameree L. Methicillin (cloxacillin)‐resistant Staphylococcus aureus strains isolated from bovine mastitis cases. Zentralblatt für Veterinärmedizin Reihe B. 1972;19:598–605. doi:10.1111/j.1439-0450.1972.tb00439.x
  • Eriksen NR, Espersen F, Rosdahl VT, Jensen K. Carriage of Staphylococcus aureus among 104 healthy persons during a 19-month period. Epidemiol infect. 1995;115:51–60. doi:10.1017/S09502688000581187641838
  • VandenBergh MF, Yzerman EP, van Belkum A, Boelens HA, Sijmons M, Verbrugh HA. Follow-up of Staphylococcus aureus nasal carriage after 8 years: redefining the persistent carrier state. J Clin Microbiol. 1999;37:3133–3140. doi:10.1128/JCM.37.10.3133-3140.199910488166
  • Diep BA, Chambers HF, Graber CJ, et al. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Int Med. 2008;148:249–257. doi:10.7326/0003-4819-148-4-200802190-0020418283202
  • Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med. 2001;344:11–16. doi:10.1056/NEJM20010104344010211136954
  • Wertheim HF, Vos MC, Ott A, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteremia in nasal carriers versus non-carriers. Lancet. 2004;364:703–705. doi:10.1016/S0140-6736(04)16897-915325835
  • Yang E, Tan J, Eells S, Rieg G, Tagudar G, Miller L. Body site colonization in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clin Microbiol Infect. 2010;16:425–431. doi:10.1111/j.1469-0691.2009.02836.x19689469
  • Faden H, Lesse AJ, Trask J, et al. Importance of colonization site in the current epidemic of staphylococcal skin abscesses. Pediatrics. 2010;125:618–624. doi:10.1542/peds.2009-1523
  • Mertz D, Frei R, Periat N, et al. Exclusive Staphylococcus aureus throat carriage: at-risk populations. Arch Intern Med. 2009;169:172–178. doi:10.1001/archinternmed.2008.53619171814
  • Batra R, Eziefula AC, Wyncoll D, Edgeworth J. Throat and rectal swabs may have an important role in MRSA screening of critically ill patients. Intensive Care Med. 2008;34(9):1703–1706. doi:10.1007/s00134-008-1153-118500421
  • Gillaspy AF, Lee CY, Sau S, Cheung AL, Smeltzer MS. Factors affecting the collagen binding capacity of Staphylococcus aureus. Infect Immun. 1998;66:3170–3178. doi:10.1128/IAI.66.7.3170-3178.19989632582
  • Ikawaty R, Brouwer E, Van Duijkeren E, Mevius D, Verhoef J, Fluit A. Virulence factors of genotyped bovine mastitis Staphylococcus aureus isolates in the Netherlands. Int J Dairy Sci. 2010;5:60–70. doi:10.3923/ijds.2010.60.70
  • Khandke L, Nonoyama A, Hodge TS, Nema S. Stable immunogenic compositions of Staphylococcus aureus antigens. Google Patents. 2013.
  • Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins. 2016;8:72. doi:10.3390/toxins8030072
  • van Kessel KP, Bestebroer J, van Strijp JA. Neutrophil-mediated phagocytosis of Staphylococcus aureus. Front Immunol. 2014;5:467. doi:10.3389/fimmu.2014.0046725309547
  • McDevitt D, Francois P, Vaudaux P, Foster T. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol. 1994;11:237–248. doi:10.1111/j.1365-2958.1994.tb00304.x8170386
  • Normanno G, Firinu A, Virgilio S, et al. Bolzoni G. Coagulase-positive Staphylococci and Staphylococcus aureus in food products marketed in Italy. Int J Food Microbiol. 2005;98:73–79. doi:10.1016/j.ijfoodmicro.2004.05.00815617802
  • Speziale P, Pietrocola G, Foster TJ, Geoghegan JA. Protein-based biofilm matrices in Staphylococci. Front Cell Infect Microbiol. 2014;4:171. doi:10.3389/fcimb.2014.0017125540773
  • Eid HM, Algammal AM, Elfeil WK, Youssef FM, Harb SM, Abd-Allah EM. Prevalence, molecular typing, and antimicrobial resistance of bacterial pathogens isolated from ducks. Vet World. 2019;12:677. doi:10.14202/vetworld.2019.677-68331327903
  • Otto M. Staphylococcus aureus toxins. Curr Opin Microbiol. 2014;17:32–37. doi:10.1016/j.mib.2013.11.00424581690
  • Tam K, Torres VJ. Staphylococcus aureus secreted toxins and extracellular enzymes. Gram-Positive Pathog. 2019;1:640–668.
  • Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Ann Rev Microbiol. 2010;64:143–162. doi:10.1146/annurev.micro.112408.13430920825344
  • Akineden Ö, Annemüller C, Hassan A, Lämmler C, Wolter W, Zschöck M. Toxin genes and other characteristics of Staphylococcus aureus isolates from milk of cows with mastitis. Clin Diagn Lab Immunol. 2001;8:959–964. doi:10.1128/CDLI.8.5.959-964.200111527811
  • Omoe K, Ishikawa M, Shimoda Y, Hu DL, Ueda S, Shinagawa K. Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harboring seg, seh, or sei genes. J Clin Microbiol. 2002;40:857–862. doi:10.1128/JCM.40.3.857-862.200211880405
  • Hata E, Katsuda K, Kobayashi H, Uchida I, Tanaka K, Eguchi M. Genetic variation among Staphylococcus aureus strains from bovine milk and their relevance to methicillin-resistant isolates from humans. J Clin Microbiol. 2010;48:2130–2139. doi:10.1128/JCM.01940-0920392913
  • Chang BS, Bohach GA, Lee SU, et al. Immunosuppression by T regulatory cells in cows infected with Staphylococcal superantigen. J Vet Sci. 2005;6:247. doi:10.4142/jvs.2005.6.3.24716131830
  • Rall V, Vieira F, Rall R, et al. PCR detection of staphylococcal enterotoxin genes in Staphylococcus aureus strains isolated from raw and pasteurized milk. Vet Microbiol. 2008;132:408–413. doi:10.1016/j.vetmic.2008.05.01118572331
  • Burton JL, Erskine RJ. Immunity and mastitis some new ideas for an old disease. Vet Clin. 2003;19:1–45.
  • Barrio MB, Rainard P, Prévost G. LukM/LukF′ PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils. Microbes Infect. 2006;8:2068–2074. doi:10.1016/j.micinf.2006.03.00416782383
  • Ono HK, Omoe K, Imanishi KI, et al. Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect Immun. 2008;76:4999–5005. doi:10.1128/IAI.00045-0818710864
  • Abouelfetouh A. The status of methicillin resistance among Egyptian Staphylococcus aureus isolates: an overview. Infect Disord Drug Targets. 2017;17:67–69.27488498
  • Ahmed EF, Gad GF, Abdalla AM, Hasaneen AM, Abdelwahab SF. Prevalence of methicillin resistant Staphylococcus aureus among Egyptian patients after surgical interventions. Surg Infect. 2014;15:404–411. doi:10.1089/sur.2013.212
  • Abdel-Maksoud M, El-Shokry M, Ismail G, et al. Methicillin-resistant Staphylococcus aureus recovered from healthcare- and community-associated infections in Egypt. Int J Bacteriol. 2016;2016:1–5. doi:10.1155/2016/5751785
  • El-Jakee J, Nagwa AS, Bakry M, Zouelfakar SA, Elgabry E, El-Said WG. Characteristics of Staphylococcus aureus strains isolated from human and animal sources. Am-Eurasian J Agric Environ Sci. 2008;4:221–229.
  • El-Bouseary MM, El-Banna TE, Sonbol FI. Prevalence of MRSA among Staphylococcus aureus isolates recovered from patients with otitis media. Nat Sci. 2018;16(6):48–55.
  • Algammal AM, Enany ME, El-Tarabili RM, Ghobashy MO, Helmy YA. Prevalence, antimicrobial resistance profiles, virulence and enterotoxin-determinant genes of MRSA isolated from subclinical bovine mastitis samples in Egypt. Pathogens. 2020;9:362. doi:10.3390/pathogens9050362
  • Enany M, Younes S, AL gammal AL, Salem M, El Dieb H. Prevalence of coagulase (coa) gene and mecA gene of S. aureus isolated from bovine clinical mastitis. Suez Canal Vet Med J. 2013;18:149–157. doi:10.21608/scvmj.2013.78288
  • Aly S, Fathi M, Youssef E, Mabrok M. Trichodinids and monogeneans infestation among Nile tilapia hatcheries in Egypt: prevalence, therapeutic and prophylactic treatments. Aquac Int. 2020;28:1459–1471. doi:10.1007/s10499-020-00537-w
  • Abouelmaatti RR, Algammal AM, Elfeil WM, et al. Genetic characterization, cloning, and expression of Toll-like receptor 1 mRNA Nile tilapia (Oreochromis niloticus). Veterinarski Arhiv. 2020;90:185–196.
  • El-Sayed M, Algammal A, Abouel-Atta M, Mabrok M, Emam A. Pathogenicity, genetic typing, and antibiotic sensitivity of Vibrio alginolyticus isolated from Oreochromis niloticus and Tilapia zillii. Revue de Médecine Vétérinaire. 2019;170:80–86.
  • Hammad AM, Watanabe W, Fujii T, Shimamoto T. Occurrence and characteristics of methicillin-resistant and-susceptible Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci from Japanese retail ready-to-eat raw fish. Intl J Food Microbiol. 2012;156:286–289. doi:10.1016/j.ijfoodmicro.2012.03.022
  • Enany ME, Algammal AM, Shagar GI, Hanora AM, Elfeil WK, Elshaffy NM. Molecular typing and evaluation of Sidr honey inhibitory effect on virulence genes of MRSA strains isolated from catfish in Egypt. Pakistan J Pharm Sci. 2018;31.
  • Saklani P, Lekshmi M, Nayak BB, Kumar SH. Survival of methicillin-resistant Staphylococcus aureus (MRSA) in fish and shrimp at different storage conditions. J Food Protect. 2020;83(5):844–848. doi:10.4315/JFP-19-546
  • Gilbert MJ, Bos ME, Duim B, et al. Livestock-associated MRSA ST398 carriage in pig slaughterhouse workers related to quantitative environmental exposure. Occup Environ Med. 2012;69:472–478. doi:10.1136/oemed-2011-10006922544853
  • Soonthornchaikul N, Garelick H, Jones H, Jacobs J, Ball D, Choudhury M. Resistance to three antimicrobial agents of Campylobacter isolated from organically-and intensively-reared chickens purchased from retail outlets. Int J Antimicrob Agents. 2006;27:125–130. doi:10.1016/j.ijantimicag.2005.09.02016417991
  • Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Res Int. 2014;2014.
  • Mayrhofer S, Paulsen P, Smulders FJ, Hilbert F. Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry. Int J Food Microbiol. 2004;97:23–29. doi:10.1016/j.ijfoodmicro.2004.04.00615527915
  • Carey AJ, Saiman L, Polin RA. Hospital-acquired infections in the NICU: epidemiology for the new millennium. Clin Perinatol. 2008;35:223–249. doi:10.1016/j.clp.2007.11.01418280884
  • Kitai S, Shimizu A, Kawano J, et al. Prevalence and characterization of Staphylococcus aureus and enterotoxigenic Staphylococcus aureus in retail raw chicken meat throughout Japan. J Vet Med Sci. 2005;67:269–274. doi:10.1292/jvms.67.26915805729
  • Schraft H, Kleinlein N, Untermann F. Contamination of pig hindquarters with Staphylococcus aureus. Int J Food Microbiol 1992;15:191–194. doi:10.1016/0168-1605(92)90148-V1622756
  • Pu S, Han F, Ge B. Isolation and characterization of methicillin-resistant Staphylococcus aureus strains from Louisiana retail meats. Appl Environ Microbiol. 2009;75:265–267. doi:10.1128/AEM.01110-0818978079
  • Kwon NH, Park KT, Moon JS, et al. Staphylococcal cassette chromosome mec (SCC mec) characterization and molecular analysis for methicillin-resistant Staphylococcus aureus and novel SCC mec subtype IVg isolated from bovine milk in Korea. J Antimicrob Chemother. 2005;56:624–632. doi:10.1093/jac/dki30616126781
  • Hendriksen RS, Mevius DJ, Schroeter A, et al. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004. Acta Veterinaria Scandinavica. 2008;50:28. doi:10.1186/1751-0147-50-2818611246
  • Tenhagen BA, Vossenkuhl B, Käsbohrer A, et al. Methicillin-resistant Staphylococcus aureus in cattle food chains–prevalence, diversity, and antimicrobial resistance in Germany. J Anim Sci 2014;92:2741–2751. doi:10.2527/jas.2014-766524778337
  • Juhász-Kaszanyitzky É, Jánosi S, Somogyi P, et al. MRSA transmission between cows and humans. Emerg Infect Dis. 2007;13:630. doi:10.3201/eid1304.06083317553285
  • Algammal AM, Abolghait SK, Fathi AG, Youssef FM. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers. Int J Food Microbiol. 2020;328:108669.32497922
  • Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008;46:S344–S349. doi:10.1086/53359018462089
  • Bergmann V, Köhler B, Vogel K. Staphylococcus aureus infection in chickens in industrialized poultry units. 1. Manifestations of Staphylococcus aureus infection in chickens. Archiv Fur Experimentelle Veterinarmedizin. 1980;34:891–903.7212938
  • Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P. Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect. 2010;138:606–625. doi:10.1017/S095026880999156720122300
  • Mubarack HM, Doss A, Vijayasanthi M, Venkataswamy R. Antimicrobial drug susceptibility of Staphylococcus aureus from subclinical bovine mastitis in Coimbatore, Tamilnadu, South India. Vet World. 2012;5:352. doi:10.5455/vetworld.2012.352-355
  • Tang SS, Apisarnthanarak A, Hsu LY. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev. 2014;78:3–13. doi:10.1016/j.addr.2014.08.00325134490
  • Whist AC, Østerås O, Sølverød L. Staphylococcus aureus and Streptococcus dysgalactiae in Norwegian herds after introduction of selective dry cow therapy and teat dipping. J Dairy Res. 2007;74:1–8. doi:10.1017/S002202990600213516978433
  • Eid HI, Algammal AM, Nasef SA, Elfeil WK, Mansour GH. Genetic variation among avian pathogenic E. coli strains isolated from broiler chickens. Asian J Anim Vet Adv. 2016;11:350–356. doi:10.3923/ajava.2016.350.356
  • Enany ME, Algammal AM, Nasef SA, et al. The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Express. 2019;9:192. doi:10.1186/s13568-019-0920-431797067
  • Algammal AM, Wahdan A, Elhaig MM. Potential efficiency of conventional and advanced approaches used to detect Mycobacterium bovis in cattle. Microb Pathog. 2019;134:103574. doi:10.1016/j.micpath.2019.10357431170450
  • Algammal AM, Mohamed MF, Tawfiek BA, Hozzein WN, El Kazzaz WM, Mabrok M. Molecular typing, antibiogram and PCR-RFLP based detection of aeromonas hydrophila complex isolated from oreochromis niloticus. Pathogens. 2020;9:238. doi:10.3390/pathogens9030238
  • Algammal AM, El-Kholy AW, Riad EM, et al. Genes encoding the virulence and the antimicrobial resistance in enterotoxigenic and shiga-toxigenic E. coli isolated from diarrheic calves. Toxins. 2020;12:383. doi:10.3390/toxins12060383
  • Algammal AM, El-Sayed ME, Youssef FM, et al. Prevalence, the antibiogram and the frequency of virulence genes of the most predominant bacterial pathogens incriminated in calf pneumonia. AMB Express. 2020;10:1–8. doi:10.1186/s13568-020-01037-z
  • Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–260.11381101
  • Bonnstetter KK, Wolter DJ, Tenover FC, McDougal LK, Goering RV. Rapid multiplex PCR assay for identification of USA300 community-associated methicillin-resistant Staphylococcus aureus isolates. J Clin Microbiol. 2007;45:141–146. doi:10.1128/JCM.01228-0617093011
  • Traczewski MM, Katz BD, Steenbergen JN, Brown SD. Inhibitory and bactericidal activities of daptomycin, vancomycin, and teicoplanin against methicillin-resistant Staphylococcus aureus isolates collected from 1985 to 2007. Antimicrob Agents Chemother 2009;53:1735–1738. doi:10.1128/AAC.01022-0819223623
  • Ubukata K, Nonoguchi R, Matsuhashi M, Konno M. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. J Bacteriol. 1989;171:2882–2885. doi:10.1128/JB.171.5.2882-2885.19892708325
  • Galdiero E, Liguori G, D’Isanto M, Damiano N, Sommese L. Distribution of mecA among methicillin-resistant clinical staphylococcal strains isolated at hospitals in Naples, Italy. Eur J Epidemiol. 2003;18:139–145. doi:10.1023/A:102306793021112733836
  • Pournaras S, J Sabat A, Grundmann H, Hendrix R, Tsakris A, W Friedrich A. Driving forces of mechanisms regulating oxacillin-resistance phenotypes of MRSA: truly oxacillin-susceptible mecA-positive Staphylococcus aureus clinical isolates also exist. Curr Pharm Des. 2015;21:2048–2053. doi:10.2174/138161282166615031010375425760336
  • Rybak MJ, Cappelletty DM, Moldovan T, Aeschlimann JR, Kaatz GW. Comparative in vitro activities and postantibiotic effects of the oxazolidinone compounds eperezolid (PNU-100592) and linezolid (PNU-100766) versus vancomycin against Staphylococcus aureus, coagulase-negative staphylococci, Enterococcus faecalis, and Enterococcus faecium. Antimicrob Agents Chemother. 1998;42:721–724. doi:10.1128/AAC.42.3.7219517963
  • Weigelt J, Itani K, Stevens D, Lau W, Dryden M, Knirsch C. Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother. 2005;49:2260–2266. doi:10.1128/AAC.49.6.2260-2266.200515917519
  • Wunderink RG, Rello J, Cammarata SK, Croos-Dabrera RV, Kollef MH. Linezolid vs vancomycin: analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest. 2003;124:1789–1797. doi:10.1016/S0012-3692(15)33412-714605050
  • Walkey AJ, O’Donnell MR, Wiener RS. Linezolid vs glycopeptide antibiotics for the treatment of suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a meta-analysis of randomized controlled trials. Chest. 2011;139:1148–1155. doi:10.1378/chest.10-155620864609
  • Gerson SL, Kaplan SL, Bruss JB, et al. Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother. 2002;46:2723–2726. doi:10.1128/AAC.46.8.2723-2726.200212121967
  • Legout L, Senneville E, Gomel J, Yazdanpanah Y, Mouton Y. Linezolid-induced neuropathy. Clin Infect Dis. 2004;38:767–768. doi:10.1086/38176214986270
  • Lawrence KR, Adra M, Gillman PK. Serotonin toxicity associated with the use of linezolid: a review of postmarketing data. Clin Infect Dis 2006;42:1578–1583. doi:10.1086/50383916652315
  • Bua A, Usai D, Donadu MG, et al. Antimicrobial activity of Austroeupatorium inulaefolium (HBK) against intracellular and extracellular organisms. Nat Prod Res. 2018;2(23):2869–2871. doi:10.1080/14786419.2017.1385014
  • Trong Le N, Viet Ho D, Quoc Doan T, et al. In vitro antimicrobial activity of essential oil extracted from leaves of Leoheo domatiophorus Chaowasku, DT Ngo and HT Le in Vietnam. Plants. 2020;9(4):453. doi:10.3390/plants9040453
  • Mazzarello V, Donadu MG, Ferrari M, et al. Treatment of acne with a combination of propolis, tea tree oil, and Aloe vera compared to erythromycin cream: two double-blind investigations. Clin Pharm. 2018;10:175.
  • Mazzarello V, Gavini E, Rassu G, et al. Clinical assessment of new topical cream containing two essential oils combined with tretinoin in the treatment of acne. Clin Cosmetic Investig Dermatol. 2020;13:233. doi:10.2147/CCID.S236956
  • Pitkälä A, Haveri M, Pyörälä S, Myllys V, Honkanen-Buzalski T. Bovine mastitis in Finland 2001—prevalence, distribution of bacteria, and antimicrobial resistance. J Dairy Sci. 2004;87:2433–2441. doi:10.3168/jds.S0022-0302(04)73366-415328265
  • Leonard F, Markey B. Meticillin-resistant Staphylococcus aureus in animals: a review. Vet J. 2008;175:27–36. doi:10.1016/j.tvjl.2006.11.00817215151
  • Gajdács M, Albericio F. Antibiotic resistance: from the bench to patients. Antibiotics. 2019;8:129. doi:10.3390/antibiotics8030129
  • Ito T, Okuma K, Ma XX, Yuzawa H, Hiramatsu K. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist Updates. 2003;6:41–52. doi:10.1016/S1368-7646(03)00003-7
  • Usai D, Donadu M, Bua A, et al. Enhancement of antimicrobial activity of pump inhibitors associating drugs. J Infect Dev Countr. 2019;13(2):162–164. doi:10.3855/jidc.11102
  • Burke SL, Rose WE. New pharmacological treatments for methicillin-resistant Staphylococcus aureus infections. Expert Opin Pharmacother. 2014;15:483–491. doi:10.1517/14656566.2014.87699124437531
  • Roberts JC. Community-associated methicillin-resistant Staphylococcus aureus epidemic clone USA100; more than a nosocomial pathogen. Springerplus. 2013;2:133. doi:10.1186/2193-1801-2-13323565358
  • Sergelidis D, Angelidis A. Methicillin‐resistant Staphylococcus aureus: a controversial food‐borne pathogen. Lett Appl Microbiol. 2017;64(6):409–418. doi:10.1111/lam.1273528304109
  • Abd El-Baky RM, Sandle T, John J, Abuo-Rahma GE, Hetta HF. A novel mechanism of action of ketoconazole: inhibition of the NorA efflux pump system and biofilm formation in multidrug-resistant Staphylococcus aureus. Infect Drug Res. 2019;12:1703. doi:10.2147/IDR.S201124