226
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Molecular Characterization of Carbapenemase-Producing Klebsiella pneumoniae Isolated from Egyptian Pediatric Cancer Patients Including a Strain with a Rare Gene-Combination of β-Lactamases

, , , & ORCID Icon
Pages 335-348 | Published online: 29 Jan 2021

References

  • Perdikouri EIA, Arvaniti K, Lathyris D, et al. Infections due to multidrug-resistant bacteria in oncological patients: insights from a five-year epidemiological and clinical analysis. Microorganisms. 2019;7(9):1–13. doi:10.3390/microorganisms7090277
  • WHO. The fight against antimicrobial resistance is significant for cancer prevention and treatment. 2021 Available from: https://apps.who.int/iris/bitstream/handle/10665/337511/WHO-EURO-2020-1628-41379-56382-eng.pdf.
  • De Araújo Jácome PRL, Alves LR, Jácome-Júnior AT, et al. Detection of blaSPM-1, blaKPC, blaTEM and blaCTX-M genes in isolates of Pseudomonas aeruginosa, Acinetobacter spp. And Klebsiella spp. from cancer patients with healthcare-associated infections. J Med Microbiol. 2016;65(7):658–665. doi:10.1099/jmm.0.00028027217349
  • Satlin MJ, Cohen N, Ma KC, et al. Bacteremia due to carbapenem-resistant Enterobacteriaceae in neutropenic patients with hematologic malignancies. J Infect. 2016;73(4):336–345. doi:10.1016/j.jinf.2016.07.00227404978
  • Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019 https://www.cdc.gov/drugresistance/biggest_threats.html.
  • Papanicolas LE, Gordon DL, Wesselingh SL, Rogers GB. Not just antibiotics: is cancer chemotherapy driving antimicrobial resistance? Trends Microbiol. 2018;26(5):393–400. doi:10.1016/j.tim.2017.10.00929146383
  • Rapoport B, Klastersky J, Raftopoulos H, et al. The emerging problem of bacterial resistance in cancer patients; proceedings of a workshop held by MASCC B neutropenia, infection, and myelosuppression ^ study group during the MASCC Annual Meeting Held in Berlin on 27 – 29 June 2013. Supportive Care Cancer. 2016;24:2819–2826. doi:10.1007/s00520-016-3183-5
  • Codjoe FS, Donkor ES. Carbapenem Resistance: a review. Med Sci. 2017;6(1). https://www.ncbi.nlm.nih.gov/pubmed/29267233.
  • Tamma PD, Simner PJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J Clin Microbiol. 2018;56(11):1–13. doi:10.1128/JCM.01140-18
  • Sekyere JO, Govinden U, Essack S. The molecular epidemiology and genetic environment of carbapenemases detected in Africa. Microb Drug Resist. 2016;22(1):59–68. doi:10.1089/mdr.2015.005326161476
  • Montazeri EA, Khosravi AD, Saki M, Sirous M, Keikhaei B, Seyed-Mohammadi S. Prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae causing bloodstream infections in cancer patients from southwest of Iran. Infect Drug Resist. 2020;13:1319–1326. doi:10.2147/IDR.S25435732440169
  • Yazdansetad S, Alkhudhairy MK, Najafpour R, et al. Preliminary survey of extended-spectrum β-lactamases (ESBLs) in nosocomial uropathogen Klebsiella pneumoniae in north-central Iran. Heliyon. 2019;5(9):e02349. doi:10.1016/j.heliyon.2019.e0234931687535
  • Mohamed ER, Aly SA, Halby HM, Ahmed SH, Zakaria AM, El-Asheer OM. Epidemiological typing of multidrug-resistant Klebsiella pneumoniae, which causes paediatric ventilator-associated pneumonia in Egypt. J Med Microbiol. 2017;66(5):628–634. doi:10.1099/jmm.0.00047328485710
  • Duman Y, Ersoy Y, Gursoy NC, Toplu SA, Otlu B. A silent outbreak due to Klebsiella pneumoniae that co-produced NDM-1andOXA-48 carbapenemases, and infection control measures. Iran J Basic Med Sci. 2020;23(1):46–50. doi:10.22038/IJBMS.2019.35269.840032405347
  • Baranovsky S, Romano-Bertrand S, Dumont Y, et al. Tracking carbapenemase-producing bacteria by molecular typing: population diversity and sampling pitfall. Infect Genet Evol. 2018;65:104–106. doi:10.1016/j.meegid.2018.07.02030030207
  • Darda VM, Iosifidis E, Antachopoulos C, et al. Risk factors for carbapenem resistance and outcomes when treating bloodstream infections in a pediatric intensive care unit. Acta Paediatr Int J Paediatr. 2019;108(10):1923–1924. doi:10.1111/apa.14923
  • Hudzicki J. Kirby-bauer disk diffusion susceptibility test protocol. Am Soc Microbiol. 2009;1–13. https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro.
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-seventh informational supplement. CLSI document M100-S27. 27th ed 2017; Available from: www.clsi.org.
  • Ragheb SM, Tawfick MM, El-Kholy AA, Abdulall AK. Phenotypic and genotypic features of klebsiella pneumoniae harboring carbapenemases in Egypt: OXA-48-like carbapenemases as an investigated model. Antibiotics. 2020;9(12):852. doi:10.3390/antibiotics9120852
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement CLSI. Vol. 32; 2015.
  • Georgios M, Egki T, Effrosyni S. Phenotypic, and molecular methods for the detection of antibiotic resistance mechanisms in gram-negative nosocomial pathogens In: Saxena SK, ed. Trends in Infectious Diseases. Rijeka: IntechOpen. 2014:139–162. doi:10.5772/57582
  • Xia Y, Liang Z, Su X, Xiong Y. Characterization of carbapenemase genes in Enterobacteriaceae species exhibiting decreased susceptibility to carbapenems in a university hospital in Chongqing, China. Ann Lab Med. 2012;32(4):270–275. doi:10.3343/alm.2012.32.4.27022779068
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi:10.1016/S0022-2836(05)80360-22231712
  • Bilung LM, Pui CF, Su’Ut L, Apun K. Evaluation of BOX-PCR and ERIC-PCR as molecular typing tools for pathogenic leptospira. Dis Markers. 2018;2018:1–9. doi:10.1155/2018/1351634
  • Sneath PHA, Sokal RR. 1975 Numerical taxonomy. the principles and practice of numerical classification In: Peter HAS, Sokal RR, editors. The Quarterly Review of Biology. Vol. 50 Taylor & Francis. 525–526. doi:10.1086/408956
  • CDC (Centers for Disease Control and Prevention). Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexner Available from: https://www.cdc.gov/pulsenet/pdf/ecoli-shigella-salmonella-pfge-protocol-508c.pdf. 2013.
  • Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233–2239. doi:10.1128/jcm.33.9.2233-2239.19957494007
  • Manohar P, Leptihn S, Lopes BS, Ramesh N. Dissemination of Carbapenem-resistance and Plasmids-encoding Carbapenemases in Gram-negative Bacteria Isolated from India. bioRxiv. 2020:102434. doi:10.1101/2020.05.18.102434
  • Khajuria A, Praharaj AK, Kumar M, Grover N. Carbapenem resistance among enterobacter species in a tertiary care hospital in central India. Chemother Res Pract. 2014;2014:6. doi:10.1155/2014/972646
  • Gong X, Zhang J, Su S, et al. Molecular characterization and epidemiology of carbapenem non-susceptible enterobacteriaceae isolated from the eastern region of heilongjiang province, China. BMC Infect Dis. 2018;18(1):1–10. doi:10.1186/s12879-018-3294-329291713
  • Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol. 1988;26(11):2465–2466. doi:10.1128/JCM.26.11.2465-2466.19883069867
  • Magiorakos A, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x21793988
  • World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017 Available from: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/.
  • European Centre for Disease Prevention and Control. Carbapenem-resistant Enterobacteriaceae; 2018 Available from: https://ecdc.europa.eu/sites/portal/files/documents/RRA-Enterobacteriaceae-Carbapenems-European-Union-countries.
  • Kotb S, Lyman M, Ismail G, et al. Epidemiology of Carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using national healthcare-associated infections surveillance data, 2011–2017. Antimicrob Resist Infect Control. 2020;9(1):1–9. doi:10.1186/s13756-019-0639-731908772
  • Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the epidemiology of multi-drug resistant gram-negative bacilli in the Middle East using a one health approach. Front Microbiol. 2019;10(AUG). doi:10.3389/fmicb.2019.01941
  • El-Badawy MF, El-Far SW, Althobaiti SS, Abou-Elazm FI, Shohayeb MM. The first Egyptian report showing the co-existence of blaNDM-25, blaOXA-23, blaOXA-181, and blaGES-1 among carbapenem-resistant K. pneumoniae clinical isolates genotyped by BOX-PCR. Infect Drug Resist. 2020;13:1237–1250. doi:10.2147/IDR.S24406432425561
  • Tawfick MM, Alshareef WA, Bendary HA, ElMahalawy H, Abdulall AK. The emergence of carbapenemase blaNDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients. Eur J Clin Microbiol Infect Dis. 2020;39(7):1251–1259. doi:10.1007/s10096-020-03839-232062725
  • Awad S, Ghanem S, Helal M, et al. Phenotypic and genotypic characteristics of community-acquired and hospital-acquired carbapenem-resistant Enterobacteriaceae in patients with liver cirrhosis at the National Liver Institute of Egypt. Can J Infect Control. 2019;34(2):100–103. doi:10.36584/cjic.2019.011
  • Khalifa HO, Soliman AM, Ahmed AM, et al. High carbapenem resistance in clinical gram-negative pathogens isolated in Egypt. Microb Drug Resist. 2017;23(7):838–844. doi:10.1089/mdr.2015.033928191865
  • David S, Reuter S, Harris SR, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919–1929. doi:10.1038/s41564-019-0492-831358985
  • Touati A, Mairi A. Epidemiology of carbapenemase-producing Enterobacterales in the Middle East: a systematic review. Expert Rev Anti Infect Ther. 2020;18(3):241–250. doi:10.1080/14787210.2020.172912632043905
  • Vanegas JM, Parra OL, Jiménez JN. Molecular epidemiology of carbapenem-resistant Gram-negative bacilli from infected pediatric population in tertiary-care hospitals in Medellín, Colombia: an increasing problem. BMC Infect Dis. 2016;16(1):1–10. doi:10.1186/s12879-016-1805-726729246
  • Jing X, Zhou H, Min X, et al. The simplified carbapenem inactivation method (sCIM) for simple and accurate detection of carbapenemase-producing gram-negative bacilli. Front Microbiol. 2018;9(October):1–7. doi:10.3389/fmicb.2018.0239129403456
  • Zhong H, Wu ML, Feng WJ, Huang SF, Yang P. Accuracy and applicability of different phenotypic methods for carbapenemase detection in Enterobacteriaceae: a systematic review and meta-analysis. J Glob Antimicrob Resist. 2020;21:138–147. doi:10.1016/j.jgar.2019.10.01031639543
  • Jeong SH, Kim HS, Kim JS, et al. Prevalence and molecular characteristics of carbapenemase-producing Enterobacteriaceae from five hospitals in Korea. Ann Lab Med. 2016;36(6):529–535. doi:10.3343/alm.2016.36.6.52927578505
  • Zafer MM, El-Mahallawy HA, Abdulhak A, Amin MA, Al-Agamy MH, Radwan HH. Emergence of colistin resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli strains isolated from cancer patients. Ann Clin Microbiol Antimicrob. 2019;18(1):1–8. doi:10.1186/s12941-019-0339-430606201
  • Liu D, ed. Molecular Detection of Human Bacterial Pathogens. New York: CRC Press; 2011. doi:10.1201/b10848.
  • Ghaith DM, Zafer MM, Said HM, et al. Genetic diversity of carbapenem-resistant Klebsiella pneumoniae causing neonatal sepsis in intensive care unit, Cairo, Egypt. Eur J Clin Microbiol Infect Dis. 2020;39(3):583–591. doi:10.1007/s10096-019-03761-231773363
  • Martelius T, Jalava J, Kärki T, Möttönen T, Ollgren J, Lyytikäinen O. Nosocomial bloodstream infections caused by Escherichia coli and Klebsiella pneumoniae resistant to third-generation cephalosporins, Finland, 1999–2013: trends, patient characteristics, and mortality. Infect Dis. 2016;48(3):229–234. doi:10.3109/23744235.2015.1109135
  • Chiotos K, Han JH, Tamma PD. Carbapenem-resistant enterobacteriaceae infections in children. Curr Infect Dis Rep. 2017;18(1):139–148. doi:10.1016/j.physbeh.2017.03.040
  • van Loon K, Vos M. A systematic review and meta-analyses of the clinical. Antimicrob Agents Chemother. 2018;62(e01730–17):1–18. doi:10.1128/AAC.01730-17
  • Moubareck CA, Mouftah SF, Pál T, et al. Clonal emergence of Klebsiella pneumoniae ST14 co-producing OXA-48-type and NDM carbapenemases with high rate of colistin resistance in Dubai, United Arab Emirates. Int J Antimicrob Agents. 2018;52(1):90–95. doi:10.1016/j.ijantimicag.2018.03.00329530587
  • Ripabelli G, Tamburro M, Guerrizio G, et al. Tracking multidrug-resistant klebsiella pneumoniae from an Italian hospital: molecular epidemiology and surveillance by PFGE, RAPD, and PCR-based resistance genes prevalence. Curr Microbiol. 2018;75(8):977–987. doi:10.1007/s00284-018-1475-329523910
  • Pantel A, Richaud-Morel B, Cazaban M, Bouziges N, Sotto A, Lavigne JP. Environmental persistence of OXA-48-producing Klebsiella pneumoniae in a French intensive care unit previous presentations: presented to the Congress of French Society of Hygiene, June 2015, Tours, France. Am J Infect Control. 2016;44(3):366–368. doi:10.1016/j.ajic.2015.09.02126521704
  • European Centre for Disease Prevention and Control. Outbreak of Carbapenemase-Producing (NDM-1 and OXA-48) and Colistin-Resistant Klebsiella Pneumoniae ST307. North-East Germany: ECDC: Stockholm; 2019 2810.
  • Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol. 2014;9(9):1071–1081. doi:10.2217/fmb.14.4825340836
  • Shankar C, Mathur P, Venkatesan M, et al. Rapidly disseminating blaOXA-232 carrying Klebsiella pneumoniae belonging to ST231 in India: multiple and varied mobile genetic elements. BMC Microbiol. 2019;19(1):1–8. doi:10.1186/s12866-019-1513-830616583
  • David S, Cohen V, Reuter S, et al. Genomic analysis of carbapenemase-encoding plasmids from Klebsiella pneumoniae across Europe highlights three major patterns of dissemination. bioRxiv. 2019:1–36. 10.1101/2019.12.19.873935.
  • Solgi H, Nematzadeh S, Giske CG, et al. Molecular epidemiology of OXA-48 and NDM-1 producing enterobacterales species at a University Hospital in Tehran, Iran, between 2015 and 2016. Front Microbiol. 2020;11(May):1–13. doi:10.3389/fmicb.2020.0093632082274
  • Hamprecht A, Sommer J, Willmann M, et al. Pathogenicity of clinical OXA-48 isolates and impact of the OXA-48 IncL plasmid on virulence and bacterial fitness. Front Microbiol. 2019;10(November):1–12. doi:10.3389/fmicb.2019.0250930728808
  • Versalovic J, Koeuth T, Lupski R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19(24):6823–6831. doi:10.1093/nar/19.24.68231762913