503
Views
9
CrossRef citations to date
0
Altmetric
Review

Immunological Aspects of Diagnosis and Management of Childhood Tuberculosis

ORCID Icon, , , , , & ORCID Icon show all
Pages 929-946 | Published online: 08 Mar 2021

References

  • Moreno-Pérez D, Andrés Martín A, Altet Gómez N, et al. Diagnóstico de la tuberculosis en la edad pediátrica. Documento de consenso de la Sociedad Española de Infectología Pediátrica (SEIP) y la Sociedad Española de Neumología Pediátrica (SENP). Anales De Pediatría. 2010;73(3):143.e1-143.e14. doi:10.1016/j.anpedi.2009.12.017
  • Dreesman A, Corbière V, Dirix V, et al. Age-Stratified T cell responses in children infected with Mycobacterium tuberculosis. Front Immunol. 2017. doi:10.3389/fimmu.2017.01059
  • WHO. https://www.Who.Int/Biologicals/Areas/Vaccines/Bcg/En/.
  • WHO. Global Tuberculosis Report 2019; 2019.
  • Mellado Peña MJ, Santiago García B, Baquero-Artigao F, et al. Actualización del tratamiento de la tuberculosis en niños. An Pediatría. 2018;88(1):52.e1–52.e12. doi:10.1016/j.anpedi.2017.05.013
  • Thomas TA. Tuberculosis in Children. Thorac Surg Clin. 2019;29(1):109–121. doi:10.1016/j.thorsurg.2018.09.00930454917
  • Newton SM, Brent AJ, Anderson S, Whittaker E, Kampmann B. Paediatric tuberculosis. Lancet Infect Dis. 2008;8(8):498–510. doi:10.1016/S1473-3099(08)70182-818652996
  • Joosten SA, Fletcher HA, Ottenhoff THM, Helicopter A. Perspective on TB biomarkers: pathway and process based analysis of gene expression data provides new insight into TB pathogenesis. PLoS One. 2013. doi:10.1371/journal.pone.0073230
  • Zar HJ, Workman LJ, Little F, Nicol MP. Diagnosis of Pulmonary Tuberculosis in Children: assessment of the 2012 National Institutes of Health Expert Consensus Criteria. Clin Infect Dis. 2015;61((Suppl 3)):S173–S178. doi:10.1093/cid/civ622
  • Zar HJ, Hanslo D, Tannenbaum E, et al. Aetiology and outcome of pneumonia in human immunodeficiency virus-infected children hospitalized in South Africa. Acta Paediatr Int J Paediatr. 2007;90(2):119–125. doi:10.1111/j.1651-2227.2001.tb00270.x
  • Perez-Velez CM, Marais BJ. Tuberculosis in children. N Engl J Med. 2012;367(4):348–361. doi:10.1056/NEJMra100804922830465
  • Tuberculosis PNDE. Guía Práctica Para La Atención De La Tuberculosis En Niños, Niñas y Adolescentes.
  • Marais BJ, Gie RP, Schaaf HS, Beyers N, Donald PR, Starke JR. Childhood pulmonary tuberculosis: old wisdom and new challenges. Am J Respir Crit Care Med. 2006;173(10):1078–1090. doi:10.1164/rccm.200511-1809SO16484674
  • Marais BJ, Gie RP, Hesseling AC, et al. A refined symptom-based approach to diagnose pulmonary tuberculosis in children. Pediatrics. 2006;118(5):e1350 LP–e1359. doi:10.1542/peds.2006-051917079536
  • Ho TS, Wang SM, Shen CF, Lee KH, Liu CC. Clinical perspectives of childhood tuberculosis in Taiwan. J Formos Med Assoc. 2011;110(12):737–743. doi:10.1016/j.jfma.2011.11.00222248826
  • Marais BJ, Gie RP, Obihara CC, Hesseling AC, Schaaf HS, Beyers N. Well defined symptoms are of value in the diagnosis of childhood pulmonary tuberculosis. Arch Dis Child. 2005;90(11):1162–1165. doi:10.1136/adc.2004.07079716131501
  • Nemir Rlee KK. Tuberculosis in children and adolescents in the 1980s. Pediatr Infect Dis J. 1988;7:6.
  • World Health Organization. No Title.
  • Marais BJ, Gie RP, Schaaf HS, et al. A proposed radiological classification of childhood intra-thoracic tuberculosis. Pediatr Radiol. 2004;34(11):886–894. doi:10.1007/s00247-004-1238-015300340
  • Piccini P, Chiappini E, Tortoli E, de Martino M, Galli L. Clinical peculiarities of tuberculosis. BMC Infect Dis. 2014;14(Suppl 1):1–12. doi:10.1186/1471-2334-14-S1-S424380631
  • Cruz AT, Hwang KM, Birnbaum GD, Starke JR. Adolescents with tuberculosis: a review of 145 cases. Pediatr Infect Dis J. 2013;32(9):937–941. doi:10.1097/INF.0b013e318293321423538527
  • Teeratakulpisarn J, Lumbiganon P, Pairojkul S, Jariyaviladkul P. Cavitary tuberculosis in a young infant. Pediatr Infect Dis. 1994;13(6):545–546. doi:10.1097/00006454-199406000-00018
  • American Thoracic Society. Diagnostic standards and classification of tuberculosis. Am Rev Respir Dis. 1990;142(3):725–735.2389921
  • Turkova A, Welch SB, Paton JY, et al. Management of paediatric tuberculosis in leading UK centres: unveiling consensus and discrepancies. Int J Tuberc Lung Dis. 2014;18(9):1047–1056. doi:10.5588/ijtld.14.009425189551
  • Jaganath D, Mupere E. Childhood tuberculosis and malnutrition. J Infect Dis. 2012. doi:10.1093/infdis/jis608
  • Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc R Soc B Biol Sci. 2015. doi:10.1098/rspb.2014.3085
  • Seddon JA, Chiang SS, Esmail H, Coussens AK. The wonder years: what can primary school children teach us about immunity to mycobacterium tuberculosis? Front Immunol. 2018;9(December). doi:10.3389/fimmu.2018.02946
  • Patel LN, Detjen AK. Integration of childhood TB into guidelines for the management of acute malnutrition in high burden countries. Public Heal Action. 2017. doi:10.5588/pha.17.0018
  • Thomas TA, Mondal D, Noor Z, et al. Malnutrition and helminth infection affect performance of an interferon γ-release assay. Pediatrics. 2010. doi:10.1542/peds.2010-0885
  • Newton SM, Brent AJ, Anderson S, Whittaker E, Kampmann B. Paediatric tuberculosis. Lancet Infect Dis. 2008. doi:10.1016/S1473-3099(08)70182-8
  • Casanova JL, Abel L. Human genetics of infectious diseases: a unified theory. EMBO J. 2007. doi:10.1038/sj.emboj.7601558
  • Lancioni C, Nyendak M, Kiguli S, et al. CD8 + T cells provide an immunologic signature of tuberculosis in young children. Am J Respir Crit Care Med. 2012. doi:10.1164/rccm.201107-1355OC
  • Vanden Driessche K, Persson A, Marais BJ, Fink PJ, Urdahl KB. Immune vulnerability of infants to tuberculosis. Clin Dev Immunol. 2013. doi:10.1155/2013/781320
  • Covián C, Fernández-Fierro A, Retamal-Díaz A, et al. BCG-induced cross-protection and development of trained immunity: implication for vaccine design. Front Immunol. 2019. doi:10.3389/fimmu.2019.02806
  • Hemingway C, Berk M, Anderson ST, et al. Childhood tuberculosis is associated with decreased abundance of T cell gene transcripts and impaired T cell function. PLoS One. 2017. doi:10.1371/journal.pone.0185973
  • Whittaker E, Lopez-Varela E, Broderick C, Seddon JA. Examining the complex relationship between tuberculosis and other infectious diseases in children: a review. Front Pediatr. 2019. doi:10.3389/fped.2019.00233
  • Osman NM, Gomaa AA, Sayed NM, Abd El Aziz AA. Microarray detection of fungal infection in pulmonary tuberculosis. Egypt J Chest Dis Tuberc. 2013. doi:10.1016/j.ejcdt.2013.02.002
  • Dhanasekaran S, Jenum S, Stavrum R, et al. Effect of non-tuberculous mycobacteria on host biomarkers potentially relevant for tuberculosis management. PLoS Negl Trop Dis. 2014. doi:10.1371/journal.pntd.0003243
  • Black GF, Dockrell HM, Crampin AC, et al. Patterns and implications of naturally acquired immune responses to environmental and tuberculous mycobacterial antigens in Northern Malawi. J Infect Dis. 2001. doi:10.1086/322042
  • Boisson-Dupuis S, Bustamante J, El-Baghdadi J, et al. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev. 2015. doi:10.1111/imr.12272
  • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007. doi:10.1128/CMR.00029-06
  • Tuberculosis and fungal co-infection present in a previously healthy patient. Colomb Med. 2016.
  • Amiri MRJ, Siami R, Khaledi A. Tuberculosis Status and Coinfection of Pulmonary Fungal Infections in Patients Referred to Reference Laboratory of Health Centers Ghaemshahr City during 2007–2017. Ethiop J Health Sci. 2018. doi:10.4314/ejhs.v28i6.2
  • Guinea J, Torres-Narbona M, Gijón P, et al. Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors, and outcome. Clin Microbiol Infect. 2010. doi:10.1111/j.1469-0691.2009.03015.x
  • Naidu VG, Tammineni AK, Biscopink RJ, Davis TL, Veerabagu MP. Coccidioides immitis and Mycobacterium tuberculosis diagnosed by endoscopic ultrasound. J S C Med Assoc. 2009.
  • Cole GT, Hung CY, Sanderson SD, et al. Novel Strategies to Enhance Vaccine Immunity against Coccidioidomycosis. PLoS Pathog. 2013. doi:10.1371/journal.ppat.1003768
  • Mitchell Magee D, Cox RA. Interleukin-12 regulation of host defenses against Coccidioides immitis. Infect Immun. 1996. doi:10.1128/iai.64.9.3609-3613.1996
  • Venturini E, Turkova A, Chiappini E, Galli L, de Martino M, Tuberculosis TC. HIV co-infection in children. BMC Infect Dis. 2014. doi:10.1186/1471-2334-14-S1-S5
  • Du Plessis N, Jacobs R, Gutschmidt A, et al. Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with Mycobacterium tuberculosis. Eur J Immunol. 2017. doi:10.1002/eji.201646658
  • Walaza S, Tempia S, Dawood H, et al. The impact of influenza and tuberculosis interaction on mortality among individuals aged ≥15 years hospitalized with severe respiratory illness in South Africa, 2010–2016. Open Forum Infect Dis. 2019. doi:10.1093/ofid/ofz020
  • Redford PS, Mayer-Barber KD, McNab FW, et al. Influenza A virus impairs control of mycobacterium tuberculosis coinfection through a type i interferon receptor-dependent pathway. J Infect Dis. 2014. doi:10.1093/infdis/jit424
  • Walaza S, Cohen C, Tempia S, et al. Influenza and tuberculosis co-infection: a systematic review. Influenza Other Respi Viruses. 2020. doi:10.1111/irv.12670
  • Klenerman P, Hill A. T cells and viral persistence: lessons from diverse infections. Nat Immunol. 2005. doi:10.1038/ni1241
  • Wittkop L, Bitard J, Lazaro E, et al. Effect of cytomegalovirus-induced immune response, self antigen-induced immune response, and microbial translocation on chronic immune activation in successfully treated HIV type 1-infected patients: the ANRS CO3 Aquitaine Cohort. J Infect Dis. 2013. doi:10.1093/infdis/jis732
  • Gianella S, Anderson CM, Var SR, et al. Replication of human herpesviruses is associated with higher HIV DNA levels during antiretroviral therapy started at early phases of HIV Infection. J Virol. 2016. doi:10.1128/jvi.02638-15
  • Stockdale L, Nash S, Farmer R, et al. Cytomegalovirus antibody responses associated with increased risk of tuberculosis disease in ugandan adults. J Infect Dis. 2020. doi:10.1093/infdis/jiz581
  • Olaleye OD, Omilabu SA, Baba SS. Cytomegalovirus infection among tuberculosis patients in a chest hospital in Nigeria. Comp Immunol Microbiol Infect Dis. 1990. doi:10.1016/0147-9571(90)90522-U
  • Amran FS, Kim K, Lim A, et al. Is Pulmonary non-Tuberculous Mycobacterial disease linked with a high burden of latent Cytomegalovirus? J Clin Immunol. 2016. doi:10.1007/s10875-016-0233-1
  • Muller J, Tanner R, Matsumiya M, et al. Cytomegalovirus infection is a risk factor for TB disease in Infants. bioRxiv. 2017. doi:10.1101/222646
  • Adland E, Klenerman P, Goulder P, Matthews PC. Ongoing burden of disease and mortality from HIV/CMV coinfection in Africa in the antiretroviral therapy era. Front Microbiol. 2015. doi:10.3389/fmicb.2015.01016
  • Brigham DJ, Women’s Hospital Y, et al. The Global Burden of Tuberculosis Mortality in Children: a Mathematical Modelling Study. 5.; 2017.
  • Organization WH. Global tuberculosis report 2013. 2013.
  • Kumar MK, Kumar P, Singh A. Recent advances in the diagnosis and treatment of childhood tuberculosis. J Nat Sci Biol Med. 2015;6(2):314–320. doi:10.4103/0976-9668.15998826283820
  • Ruiz Jiménez M, Guillén Martín S, Prieto Tato LM, et al. “ Induced sputum versus gastric lavage for the diagnosis of pulmonary tuberculosis in children.”. BMC Infect Dis. 2013;13(1):222. doi:10.1186/1471-2334-13-22223679059
  • Opota O, Mazza-Stalder J, Greub G, Jaton K. The rapid molecular test Xpert MTB/RIF ultra: towards improved tuberculosis diagnosis and rifampicin resistance detection. Clin Microbiol Infect. 2019;25(11):1370–1376. doi:10.1016/j.cmi.2019.03.02130928564
  • MacLean E, Sulis G, Denkinger CM, Johnston JC, Pai M, Khana FA. Diagnostic accuracy of Stool Xpert MTB/RIF for detection of pulmonary tuberculosis in children: a Systematic Review and Meta-analysis. J Clin Microbiol. 2019;57:6. doi:10.1128/JCM.02057-18
  • Nikam C, Kazi M, Nair C, Jaggannath M, Shetty A, Rodrigues C. Evaluation of the Indian TrueNAT micro RT-PCR device with GeneXpert for case detection of pulmonary tuberculosis. 2014. doi:10.1016/j.ijmyco.2014.04.003
  • Nicol MP, Workman L, Prins M, et al. Accuracy of Xpert Mtb/Rif Ultra for the Diagnosis of Pulmonary Tuberculosis in Children. Pediatr Infect Dis J. 2018;37(10):e261–e263. doi:10.1097/INF.000000000000196029474257
  • Nhu NTQ, Ha DTM, Anh ND, et al. Evaluation of Xpert MTB/RIF and MODS assay for the diagnosis of pediatric tuberculosis. BMC Infect Dis. 2013. doi:10.1186/1471-2334-13-31
  • Khan IH, Ravindran R, Yee JA, et al. Profiling antibodies to Mycobacterium tuberculosis by multiplex microbead suspension arrays for serodiagnosis of tuberculosis. Clin Vaccine Immunol. 2008;15(3):433–438. doi:10.1128/CVI.00354-0718077619
  • Lyashchenko KP, Singh M, Colangeli R, Gennaro ML. A multi-antigen print immunoassay for the development of serological diagnosis of infectious diseases. J Immunol Methods. 2000;242(1–2):91–100. doi:10.1016/S0022-1759(00)00241-610986392
  • Senol G, Ecevit C, Öztürk A. Humoral immune response against 38- and 16-kDa mycobacterial antigens in childhood tuberculosis. Pediatr Pulmonol. 2009. doi:10.1002/ppul.20901
  • Bothamley G, Udani P, Rudd R, Festenstein F, Ivanyi J. Humoral response to defined epitopes of tubercle bacilli in adult pulmonary and child tuberculosis. Eur J Clin Microbiol Infect Dis. 1988. doi:10.1007/BF1964242
  • Pukazhvanthen P, Anbarasu D, Kabeer Basirudeen SA, Raja A, Singh M. Assessing humoral immune response of 4 recombinant antigens for serodiagnosis of tuberculosis. Tuberculosis. 2014. doi:10.1016/j.tube.2014.09.006
  • Raqib R, Mondal D, Karim MA, et al. Detection of antibodies secreted from circulating Mycobacterium tuberculosis-specific plasma cells in the diagnosis of pediatric tuberculosis. Clin Vaccine Immunol. 2009;16(4):521–527. doi:10.1128/CVI.00391-0819193833
  • Raqib R, Rahman J, Kamaluddin AKM, et al. Rapid Diagnosis of Active Tuberculosis by Detecting Antibodies from Lymphocyte Secretions. J Infect Dis. 2003;188(3):364–370. doi:10.1086/37651112870117
  • Joosten SA, Goeman JJ, Sutherland JS, et al. Identification of biomarkers for tuberculosis disease using a novel dual-color RT-MLPA assay. Genes Immun. 2012;13(1):71–82. doi:10.1038/gene.2011.6421956656
  • Iqbal NT, Ahmed K, Qamar FN, et al. Antibody-secreting cells to diagnose Mycobacterium tuberculosis infection in children in Pakistan. Achkar JM, ed. mSphere. 2020;5(1). doi:10.1128/mSphere.00632-19
  • Minion J, Leung E, Talbot E, Dheda K, Pai M, Menzies D. Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis. Eur Respir J. 2011;38(6):1398–1405. doi:10.1183/09031936.0002571121700601
  • Kashyap RS, Rajan AN, Ramteke SS, et al. Diagnosis of tuberculosis in an Indian population by an indirect ELISA protocol based on detection of Antigen 85 complex: a prospective cohort study. BMC Infect Dis. 2007;7. doi:10.1186/1471-2334-7-74
  • Nicol MP, Allen V, Workman L, et al. Urine lipoarabinomannan testing for diagnosis of pulmonary tuberculosis in children: a prospective study. Lancet Glob Heal. 2014;2:5. doi:10.1016/S2214-109X(14)70195-0
  • Iskandar A, Nursiloningrum E, Arthamin MZ, Olivianto E, Chandrakusuma MS. The diagnostic value of urine lipoarabinomannan (LAM) antigen in childhood tuberculosis. J Clin Diagnostic Res. 2017;11(3):EC32–EC35. doi:10.7860/JCDR/2017/20909.9542
  • Bellete B, Coberly J, Barnes GL, et al. Evaluation of a Whole‐Blood Interferon‐γ release assay for the detection of mycobacterium tuberculosis infection in 2 study populations. Clin Infect Dis. 2002;34(11):1449–1456. doi:10.1086/34039712015690
  • Di L, Li Y. The risk factor of false-negative and false-positive for T-SPOT.TB in active tuberculosis. J Clin Lab Anal. 2018;32(2). doi:10.1002/jcla.22273
  • Dogra S, Narang P, Mendiratta DK, et al. Comparison of a whole blood interferon-γ assay with tuberculin skin testing for the detection of tuberculosis infection in hospitalized children in rural India. J Infect. 2007;54(3):267–276. doi:10.1016/j.jinf.2006.04.00716733068
  • Ängeby KAK, Werngren J, Toro JC, Hedström G, Petrini B, Hoffner SE. Evaluation of the BacT/ALERT 3D system for recovery and drug susceptibility testing of Mycobacterium tuberculosis. Clin Microbiol Infect. 2003;9(11):1148–1152. doi:10.1046/j.1469-0691.2003.00783.x14616736
  • Seddon JA, Paton J, Nademi Z, et al. The impact of BCG vaccination on tuberculin skin test responses in children is age dependent: evidence to be considered when screening children for tuberculosis infection. Thorax. 2016;71(10):932–939. doi:10.1136/thoraxjnl-2015-20768727335104
  • Shah I, Kathwate J, Shetty NS. Comparison of tuberculin skin test and QuantiFERON-TB Gold In-Tube test in Bacillus Calmette-Guerin-vaccinated children. Lung India. 2020;37(1):24–29. doi:10.4103/lungindia.lungindia_304_1931898617
  • Latorre I, Díaz J, Mialdea I, et al. IP-10 is an accurate biomarker for the diagnosis of tuberculosis in children. J Infect. 2014;69(6):590–599. doi:10.1016/j.jinf.2014.06.01324975172
  • Zhang W. IP-10 for the diagnosis of tuberculosis in children. Medicine (Baltimore). 2019;98(23):e15977. doi:10.1097/MD.000000000001597731169732
  • Jacobsen M, Mattow J, Repsilber D, Kaufmann SHE. Novel strategies to identify biomarkers in tuberculosis. Biol Chem. 2008;389:5. doi:10.1515/BC.2008.053
  • Gjøen JE, Jenum S, Sivakumaran D, et al. Novel transcriptional signatures for sputum-independent diagnostics of tuberculosis in children. Sci Rep. 2017;7(1):1–9. doi:10.1038/s41598-017-05057-x28127051
  • Anderson ST, Kaforou M, Brent AJ, et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med. 2014;370(18):1712–1723. doi:10.1056/NEJMoa130365724785206
  • Portevin D, Moukambi F, Clowes P, et al. Assessment of the novel T-cell activation marker-tuberculosis assay for diagnosis of active tuberculosis in children: a prospective proof-of-concept study. Lancet Infect Dis. 2014;14(10):931–938. doi:10.1016/S1473-3099(14)70884-925185458
  • Ghazarian L, Caillat-Zucman S, Houdouin V. Mucosal-associated invariant T cell interactions with commensal and pathogenic bacteria: potential role in antimicrobial immunity in the child. Front Immunol. 2017;8(DEC). doi:10.3389/fimmu.2017.01837
  • Malka-Ruimy C, Ben YG, Lambert M, et al. Mucosal-associated invariant T cell levels are reduced in the peripheral blood and lungs of children with active pulmonary tuberculosis. Front Immunol. 2019;10(FEB). doi:10.3389/fimmu.2019.00206
  • Zhou M, Yu G, Yang X, Zhu C, Zhang Z, Zhan X. Circulating microRNAs as biomarkers for the early diagnosis of childhood tuberculosis infection. Mol Med Rep. 2016;13(6):4620–4626. doi:10.3892/mmr.2016.509727082104
  • Wang JX, Xu J, Han YF, Zhu YB, Zhang WJ. Diagnostic values of microRNA-31 in peripheral blood mononuclear cells for pediatric pulmonary tuberculosis in Chinese patients. Genet Mol Res. 2015;14(4):17235–17243. doi:10.4238/2015.December.16.2326681217
  • Reuter A, Hughes J, Furin J. Challenges and controversies in childhood tuberculosis. Lancet. 2019;394(10202):967–978. doi:10.1016/S0140-6736(19)32045-831526740
  • Harausz EP, Garcia-Prats AJ, Law S, et al. Treatment and outcomes in children with multidrug-resistant tuberculosis: a systematic review and individual patient data meta-analysis. PLoS Med. 2018;15(7):1–26. doi:10.1371/journal.pmed.1002591
  • Seddon JA, Weld ED, Schaaf HS, Garcia-Prats AJ, Kim S, Hesseling AC. Conducting efficacy trials in children with MDR-TB: what is the rationale and how should they be done? Int J Tuberc Lung Dis. 2018;22(5):24–33. doi:10.5588/ijtld.17.035929665950
  • Tucker EW, Dooley KE. Preclinical tools for the evaluation of tuberculosis treatment regimens for children. Int J Tuberculosis Lung Dis. 2018;22(5):7–15. doi:10.5588/ijtld.17.0354
  • Khatami A, Britton PN, Marais BJ. Management of Children with Tuberculosis. Clin Chest Med. 2019;40(4):797–810. doi:10.1016/j.ccm.2019.08.00331731985
  • Day S, Coombes RC, McGrath-Lone L, Schoenborn C, Ward H. Stratified, precision or personalised medicine? Cancer services in the ‘real world’ of a London hospital. Sociol Health Illn. 2017;39(1):143–158. doi:10.1111/1467-9566.1245727460935
  • Chicago U of. Evaluation for Immunologic Deficiency Syndromes.
  • Lee W, Huang J-L, Yeh K, et al. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs). J Formos Med Assoc. 2011;110(12):750–758. doi:10.1016/j.jfma.2011.11.00422248828
  • Boisson-Dupuis S, Bustamante J, El-Baghdadi J, et al. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev. 2015;264(1):103–120. doi:10.1111/imr.1227225703555
  • Filipe-Santos O, Bustamante J, Chapgier A, et al. Inborn errors of IL-12/23- and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin Immunol. 2006;18(6):347–361. doi:10.1016/j.smim.2006.07.01016997570
  • Hambleton S, Salem S, Bustamante J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med. 2011;365(2):127–138. doi:10.1056/NEJMoa110006621524210
  • Rao M, Valentini D, Dodoo E, Zumla A, Maeurer M. Anti-PD-1/PD-L1 therapy for infectious diseases: learning from the cancer paradigm. Int J Infect Dis. 2017;56(2017):221–228. doi:10.1016/j.ijid.2017.01.02828163164
  • Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018;18(2):91–104. doi:10.1038/nri.2017.11228990586
  • Tousif S, Singh Y, Prasad DVR, Sharma P, van Kaer L, Das G. T cells from programmed death-1 deficient mice respond poorly to mycobacterium tuberculosis infection. PLoS One. 2011;6:5. doi:10.1371/journal.pone.0019864
  • Jayaraman P, Jacques MK, Zhu C, et al. TIM3 Mediates T cell exhaustion during Mycobacterium tuberculosis Infection. PLoS Pathog. 2016;12(3):1–21. doi:10.1371/journal.ppat.1005490
  • Gröschel MI, van den Boom M, Migliori GB, Dara M. Prioritising children and adolescents in the tuberculosis response of the WHO European Region. Eur Respir Rev. 2019;28(151):180106. doi:10.1183/16000617.0106-201830872399
  • Jesenak M, Majtan J, Rennerova Z, Kyselovic J, Banovcin P, Hrubisko M. Immunomodulatory effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int Immunopharmacol. 2013;15(2):395–399. doi:10.1016/j.intimp.2012.11.02023261366
  • Grange JM, Brunet LR, Rieder HL. Immune protection against tuberculosis - When is immunotherapy preferable to vaccination? Tuberculosis. 2011;91(2):179–185. doi:10.1016/j.tube.2010.12.00421233019
  • Ralph AP, Kelly PM, Anstey NM. L-arginine and vitamin D: novel adjunctive immunotherapies in tuberculosis. Trends Microbiol. 2008;16(7):336–344. doi:10.1016/j.tim.2008.04.00318513971
  • Wejse C, Gomes VF, Rabna P, et al. Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2009;179(9):843–850. doi:10.1164/rccm.200804-567OC19179490
  • Martineau AR, Wilkinson RJ, Wilkinson KA, et al. A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med. 2007;176(2):208–213. doi:10.1164/rccm.200701-007OC17463418
  • Liu PT. Toll-Like Receptor Triggering of a Vitamin D-mediated human antimicrobial response. Science (80-). 2006;311(5768):1770–1773. doi:10.1126/science.1123933
  • Yuk J-M, Shin D-M, Lee H-M, et al. Vitamin D3 induces autophagy in human Monocytes/Macrophages via Cathelicidin. Cell Host Microbe. 2009;6(3):231–243. doi:10.1016/j.chom.2009.08.00419748465
  • Gynther P, Toropainen S, Matilainen JM, Seuter S, Carlberg C, Väisänen S. Mechanism of 1α,25-dihydroxyvitamin D3-dependent repression of interleukin-12B. Biochim Biophys Acta - Mol Cell Res. 2011;1813(5):810–818. doi:10.1016/j.bbamcr.2011.01.037
  • Gou X, Pan L, Tang F, Gao H, Xiao D. The association between Vitamin D status and tuberculosis in children: a meta-analysis. Med (United States). 2018. doi:10.1097/MD.0000000000012179
  • Aibana O, Huang CC, Aboud S, et al. Vitamin D status and risk of incident tuberculosis disease: a nested case-control study, systematic review, and individual participant data meta-analysis. PLoS Med. 2019. doi:10.1371/journal.pmed.1002907
  • Wu HX, feng XX, Zhu M, Wei J, Zhuo KQ, yun CD. Effects of vitamin D supplementation on the outcomes of patients with pulmonary tuberculosis: a systematic review and meta-analysis. BMC Pulm Med. 2018. doi:10.1186/s12890-018-0677-6
  • Arora A, Nadkarni B, Dev G, et al. The use of immunomodulators as an adjunct to antituberculous chemotherapy in non-responsive patients with osteo-articular tuberculosis. J Bone Jt Surg - Ser B. 2006;88(2):264–269. doi:10.1302/0301-620X.88B2.17197
  • Schoeman JF, Springer P, Ravenscroft A, et al. Adjunctive thalidomide therapy of childhood tuberculous meningitis: possible anti-inflammatory role. J Child Neurol. 2000;15(8):497–503. doi:10.1177/08830738000150080110961786
  • Butov DA, Pashkov YN, Stepanenko AL, et al. Phase IIb randomized trial of adjunct immunotherapy in patients with first-diagnosed tuberculosis, relapsed and multi-drug-resistant (MDR) TB. J Immune Based Ther Vaccines. 2011;9:1–9. doi:10.1186/1476-8518-9-321226916
  • Jesenak M, Urbancikova I, Banovcin P. Respiratory tract infections and the role of biologically active polysaccharides in their management and prevention. Nutrients. 2017;9(7):1–12. doi:10.3390/nu9070779
  • Niu H, Wang R, Jia Y T, Cai Y. Pidotimod, an immunostimulant in pediatric recurrent respiratory tract infections: a meta-analysis of randomized controlled trials. Int Immunopharmacol. 2019;67(October 2018):35–45. doi:10.1016/j.intimp.2018.11.04330530167
  • Leyer GJ, Li S, Mubasher ME, Reifer C, Ouwehand AC. Probiotic Effects on Cold and Influenza-Like Symptom Incidence and Duration in Children. Pediatrics. 2009;124(2):e172–e179. doi:10.1542/peds.2008-266619651563
  • de Vrese M, Winkler P, Rautenberg P, et al. Probiotic bacteria reduced duration and severity but not the incidence of common cold episodes in a double blind, randomized, controlled trial. Vaccine. 2006;24(44–46):6670–6674. doi:10.1016/j.vaccine.2006.05.04816844267
  • Guillemard E, Tondu F, Lacoin F, Schrezenmeir J. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114 001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br J Nutr. 2010;103(1):58–68. doi:10.1017/S000711450999139519747410
  • G-J VD, van ’T Veen A, So KL, et al. Oral Immunization with polyvalent bacterial lysate and infection with streptococcus pneumoniae: influence on interferon-gamma and PMN Elastase Concentrations in Murine Bronchoalveolar Lavage Fluid. Int Arch Allergy Immunol. 1992;97(2):173–177. doi:10.1159/0002361141582708
  • Pasquali C, Salami O, Taneja M, et al. Enhanced mucosal antibody production and protection against respiratory infections following an orally administered bacterial extract. Front Med. 2014;1(OCT):1. doi:10.3389/fmed.2014.00041
  • Jurkiewicz D, Zielnik-Jurkiewicz B. Bacterial lysates in the prevention of respiratory tract infections. Otolaryngol Pol = Polish Otolaryngol. 2018;72(5):1–8. doi:10.5604/01.3001.0012.7216
  • Esposito S, Bianchini S, Polinori I, Principi N. Impact of OM-85 given during two consecutive years to children with a history of recurrent respiratory tract infections: a retrospective study. Int J Environ Res Public Health. 2019;16(6):1–8. doi:10.3390/ijerph16061065
  • Keul R, Roth M, Papakonstantinou E, Nauck M, Perruchoud AP, Block LH. Induction of interleukin 6 and interleukin 8 expression by Broncho-Vaxom (OM-85 BV) via C-Fos/serum responsive element. Thorax. 1996;51(2):150–154. doi:10.1136/thx.51.2.1508711646
  • Ruedl C, Fruhwirth M, Wick G, Wolf H. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens. Clin Diagn Lab Immunol. 1994;1(2):150–154. doi:10.1128/cdli.1.2.150-154.19947496936
  • Bousquet J, Oliveri D. Role of Ribomunyl?? in the Prevention of Recurrent Respiratory Tract Infections in Adults. Treat Respir Med. 2006;5(5):317–324. doi:10.2165/00151829-200605050-0000316928145
  • Roth M, Pasquali C, Stolz D, Broncho Vaxom TM. OM-85) modulates rhinovirus docking proteins on human airway epithelial cells via Erk1/2 mitogen activated protein kinase and cAMP. PLoS One. 2017. doi:10.1371/journal.pone.0188010
  • Yin J, Xu B, Zeng X, Shen K. Broncho-Vaxom in pediatric recurrent respiratory tract infections: a systematic review and meta-analysis. Int Immunopharmacol. 2018. doi:10.1016/j.intimp.2017.10.032
  • Lu Y, Li Y, Xu L, Xia M, Cao L. Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children. Pharmacology. 2015;95(3–4):139–144. doi:10.1159/00037768325833066
  • Be D, Fj E, Flenady V, Jjl S. Immunostimulants for preventing respiratory tract infection in children (Review) Summary of findings for the main comparison. 2011;(6):2–4. doi:10.1002/14651858.CD004974.pub2.www.cochranelibrary.com
  • Esposito S, Bianchini S, Bosis S, et al. A randomized, placebo-controlled, double-blinded, single-centre, Phase IV trial to assess the efficacy and safety of OM-85 in children suffering from recurrent respiratory tract infections. J Transl Med. 2019;17(1):1–9. doi:10.1186/s12967-019-2040-y30602370
  • Bellanti JA, Olivieri D, Serrano E. Ribosomal Immunostimulation. BioDrugs. 2003;17(5):355–367. doi:10.2165/00063030-200317050-0000514498765
  • Carreto-Binaghi LE, Juárez E, Guzmán-Beltrán S, et al. Immunological evaluation for personalized interventions in children with tuberculosis: should it be routinely performed? J Immunol Res. 2020. doi:10.1155/2020/8235149