357
Views
2
CrossRef citations to date
0
Altmetric
Review

Climate Change and Infections on the Move in North America

ORCID Icon, , &
Pages 5711-5723 | Published online: 30 Dec 2021

References

  • US GCRP. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. Washington, DC: U.S. Global Change Research Program; 2016.
  • Watts N, Amann M, Arnell N, et al. The 2020 report of the lancet countdown on health and climate change: responding to converging crises. Lancet. 2021;397(10269):129–170. doi:10.1016/S0140-6736(20)32290-X33278353
  • Bressler RD. The mortality cost of carbon. Nat Commun. 2021;12(1):4467. doi:10.1038/s41467-021-24487-w34326326
  • Meehl GA, Stocker TF, Collins WD, et al. Global Climate Projections. Chapter. 2007;10:1254.
  • US GCRP. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume Ii: Report-In-Brief. Washington, DC, USA: U.S. Global Change Research Program; 2018.
  • Rogelj J, Popp A, Calvin KV, et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat Clim Chang. 2018;8(4):325–332. doi:10.1038/s41558-018-0091-3
  • Monaghan AJ, Sampson KM, Steinhoff DF, et al. The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes Aegypti. Clim Change. 2016;146(3–4):487–500. doi:10.1007/s10584-016-1679-029610543
  • Verner G, Schütte S, Knop J, Sankoh O, Sauerborn R. Health in climate change research from 1990 to 2014: positive trend, but still underperforming. Glob Health Action. 2016;9(1):30723. doi:10.3402/gha.v9.3072327339855
  • Smith K, Woodward A, Campbell-Lendrum D, et al. Human Health: impacts, Adaptation, and Co-Benefits. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group Ii to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2014:709–754.
  • Castillo F, Mora AM, Kayser GL, et al. Environmental health threats to Latino migrant farmworkers. Annu Rev Public Health. 2021;42(1):257–276. doi:10.1146/annurev-publhealth-012420-10501433395542
  • Riden HE, Giacinto R, Wadsworth G, Rainwater J, Andrews T, Pinkerton KE. Wildfire smoke exposure: awareness and safety responses in the agricultural workplace. J Agromedicine. 2020;25(3):330–338. doi:10.1080/1059924X.2020.172569932043423
  • Friel S, Schram A, Townsend B. The nexus between international trade, food systems, malnutrition and climate change. Nature Food. 2020;1(1):51–58. doi:10.1038/s43016-019-0014-0
  • Mahapatra B, Walia M, Rao CAR, Raju BMK, Saggurti N. Vulnerability of agriculture to climate change increases the risk of child malnutrition: evidence from a large-scale observational study in India. PLoS One. 2021;16(6):e0253637. doi:10.1371/journal.pone.025363734181668
  • Berry HL, Waite TD, Dear KBG, Capon AG, Murray V. The case for systems thinking about climate change and mental health. Nat Clim Chang. 2018;8(4):282–290. doi:10.1038/s41558-018-0102-4
  • Cianconi P, Betrò S, Janiri L. The impact of climate change on mental health: a systematic descriptive review. Front Psychiatry. 2020;11:74. doi:10.3389/fpsyt.2020.0007432210846
  • Vicedo-Cabrera AM, Scovronick N, Sera F, et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat Clim Chang. 2021;11(6):492–500. doi:10.1038/s41558-021-01058-x34221128
  • Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology. 2009;20(2):205–213. doi:10.1097/EDE.0b013e318190ee0819194300
  • Limaye VS, Vargo J, Harkey M, Holloway T, Patz JA. Climate change and heat-related excess mortality in the eastern USA. EcoHealth. 2018;15(3):485–496. doi:10.1007/s10393-018-1363-030159651
  • Vaidyanathan A, Malilay J, Schramm P, Saha S. Heat-related deaths—United States, 2004–2018. Morbidity Mortality Weekly Rep. 2020;69(24):729. doi:10.15585/mmwr.mm6924a1
  • Santos-Lozada AR, Howard JT. Use of death counts from vital statistics to calculate excess deaths in Puerto Rico following hurricane Maria. JAMA. 2018;320(14):1491–1493. doi:10.1001/jama.2018.1092930073274
  • Woodward AJ, Samet JM. Climate Change, Hurricanes, and Health. American Public Health Association; 2018.
  • Zakrison TL, Valdés DM, Shultz JM. The medical, public health, and emergency response to the impact of 2017 hurricane Irma in Cuba. Disaster Med Public Health Prep. 2020;14(1):10–17. doi:10.1017/dmp.2019.7131359852
  • Ramesh B, Jagger MA, Zaitchik B, et al. Emergency department visits associated with satellite observed flooding during and following hurricane Harvey. J Expo Sci Environ Epidemiol. 2021;31(5):832–841. doi:10.1038/s41370-021-00361-134267308
  • Xu R, Yu P, Abramson MJ, et al. Wildfires, global climate change, and human health. N Engl J Med. 2020;383(22):2173–2181. doi:10.1056/NEJMsr202898533034960
  • Finlay SE, Moffat A, Gazzard R, Baker D, Murray V. Health impacts of wildfires. PLoS Curr. 2012;1:4.
  • Sorensen C, House JA, O’Dell K, et al. Associations between wildfire-related Pm2. 5 and intensive care unit admissions in the United States, 2006–2015. GeoHealth. 2021;5(5):e2021GH000385. doi:10.1029/2021GH000385
  • Zhang W, Sheridan SC, Birkhead GS, et al. Power outage: an ignored risk factor for COPD exacerbations. Chest. 2020;158(6):2346–2357. doi:10.1016/j.chest.2020.05.55532502591
  • Tumin R. Winter weather has disrupted hundreds of thousands of Us vaccinations. New York City, NY: New York Times; 2021.
  • Huntjens P, Nachbar K. Climate change as a threat multiplier for human disaster and conflict. Hague Inst Global Justice. 2015;1:548.
  • Gorris ME, Treseder KK, Zender CS, Randerson JT. Expansion of Coccidioidomycosis endemic regions in the United States in response to climate change. GeoHealth. 2019;3(10):308–327. doi:10.1029/2019GH00020932159021
  • Nnadi NE, Carter DA. Climate change and the emergence of fungal pathogens. PLoS Pathog. 2021;17(4):e1009503. doi:10.1371/journal.ppat.100950333914854
  • Hoberg EP, Brooks DR. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philosophical Trans Royal Soc B. 2015;370(1665):20130553. doi:10.1098/rstb.2013.0553
  • Beard CB, Eisen RJ, Barker CM, et al. Ch. 5: vectorborne diseases. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. Washington, DC: U.S. Global Change Research Program; 2016:129–156.
  • UCAR Center for Science Education. Climate change: regional impacts. UCAR; 2021. Available from: https://scied.ucar.edu/learning-zone/climate-change-impacts/regional. Accessed July 15, 2021.
  • Palazzi E, Mortarini L, Terzago S, von Hardenberg J. Elevation-dependent warming in global climate model simulations at high spatial resolution. Climate Dynamics. 2019;52(5):2685–2702. doi:10.1007/s00382-018-4287-z
  • Nielsen-Gammon JW, Zhang F, Odins AM, Myoung B. Extreme rainfall in Texas: patterns and predictability. Phys Geography. 2005;26(5):340–364. doi:10.2747/0272-3646.26.5.340
  • Risser MD, Wehner MF. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during hurricane Harvey. Geophys Res Lett. 2017;44(24):12,457–412,464. doi:10.1002/2017GL075888
  • Emanuel K. Assessing the present and future probability of hurricane Harvey’s rainfall. Proc National Acad Sci. 2017;114(48):12681. doi:10.1073/pnas.1716222114
  • Smith A. U.S. Billion-Dollar Weather and Climate Disasters in Historical Context. NCEI/NOAA; 2021.
  • Muhling BA, Jacobs J, Stock Ca, Gaitan CF, Saba VS. Projections of the future occurrence, distribution, and seasonality of three vibrio species in the Chesapeake Bay under a high-emission climate change scenario. GeoHealth. 2017;1(7):278–296. doi:10.1002/2017GH00008932158993
  • Davis BJK, Corrigan AE, Sun Z, et al. Analysis of traceback investigations for Vibrio Parahaemolyticus Infections (Vibriosis) and pre-harvest environmental conditions in Washington State, 2013–2018. Sci Total Environ. 2021;752:141650. doi:10.1016/j.scitotenv.2020.14165032898797
  • Escobar LE, Ryan SJ, Stewart-Ibarra AM, et al. A global map of suitability for coastal Vibrio Cholerae under current and future climate conditions. Acta Trop. 2015;149:202–211. doi:10.1016/j.actatropica.2015.05.02826048558
  • Randa Mark A, Polz Martin F, Lim E. Effects of temperature and salinity on Vibrio Vulnificus population dynamics as assessed by quantitative PCR. Appl Environ Microbiol. 2004;70(9):5469–5476. doi:10.1128/AEM.70.9.5469-5476.200415345434
  • Hackbusch S, Wichels A, Gimenez L, Döpke H, Gerdts G. Potentially human pathogenic vibrio spp. in a coastal transect: occurrence and multiple virulence factors. Sci Total Environ. 2020;707:136113. doi:10.1016/j.scitotenv.2019.13611331864001
  • Logar-Henderson C, Ling R, Tuite AR, Fisman DN. Effects of large-scale oceanic phenomena on non-cholera vibriosis incidence in the United States: implications for climate change. Epidemiol Infect. 2019;147:e243–e243. doi:10.1017/S095026881900131631364581
  • Janda JM, Newton AE, Bopp CA. Vibriosis. Clin Lab Med. 2015;35(2):273–288. doi:10.1016/j.cll.2015.02.00726004642
  • Dechet AM, Yu PA, Koram N, Painter J. Nonfoodborne vibrio infections: an important cause of morbidity and mortality in the United States, 1997–2006. Clin Infect Dis. 2008;46(7):970–976. doi:10.1086/52914818444811
  • Ralston EP, Kite-Powell H, Beet A. An estimate of the cost of acute health effects from food- and water-borne marine pathogens and toxins in the USA. J Water Health. 2011;9(4):680–694. doi:10.2166/wh.2011.15722048428
  • Weis KE, Hammond RM, Hutchinson R, Blackmore CGM. Vibrio illness in Florida, 1998–2007. Epidemiol Infect. 2011;139(4):591–598. doi:10.1017/S095026881000135420546636
  • Newton A, Kendall M, Vugia DJ, Henao OL, Mahon BE. Increasing rates of vibriosis in the United States, 1996–2010: review of surveillance data from 2 systems. Clin Infect Dis. 2012;54(5):S391–S395. doi:10.1093/cid/cis24322572659
  • Jones EH, Feldman KA, Palmer A, Butler E, Blythe D, Mitchell CS. Vibrio infections and surveillance in Maryland, 2002–2008. Public Health Rep. 2013;128(6):537–545. doi:10.1177/00333549131280061324179265
  • Yoder JS, Eddy BA, Visvesvara GS, Capewell L, Beach MJ. The epidemiology of primary amoebic Meningoencephalitis in the USA, 1962–2008. Epidemiol Infect. 2010;138(7):968–975. doi:10.1017/S095026880999101419845995
  • Capewell LG, Harris AM, Yoder JS, et al. Diagnosis, clinical course, and treatment of primary amoebic Meningoencephalitis in the United States, 1937–2013. J Pediatric Infect Dis Soc. 2015;4(4):e68–e75. doi:10.1093/jpids/piu10326582886
  • Gharpure R, Gleason M, Salah Z, et al. Geographic range of recreational water-associated primary amebic Meningoencephalitis, United States, 1978–2018. Emerg Infect Dis. 2021;27(1):271–274. doi:10.3201/eid2701.20211933350926
  • Mwachui MA, Crump L, Hartskeerl R, Zinsstag J, Hattendorf J. Environmental and behavioural determinants of leptospirosis transmission: a systematic review. PLoS Negl Trop Dis. 2015;9(9):e0003843. doi:10.1371/journal.pntd.000384326379035
  • Costa F, Hagan JE, Calcagno J, et al. Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis. 2015;9(9):e0003898. doi:10.1371/journal.pntd.000389826379143
  • Naing C, Reid SA, Aye SN, Htet NH, Ambu S. Risk factors for human leptospirosis following flooding: a meta-analysis of observational studies. PLoS One. 2019;14(5):e0217643. doi:10.1371/journal.pone.021764331141558
  • Gaynor K, Katz AR, Park SY, Nakata M, Clark TA, Effler PV. Leptospirosis on Oahu: an outbreak associated with flooding of a university campus. Am J Trop Med Hyg. 2007;76(5):882–886. doi:10.4269/ajtmh.2007.76.88217488909
  • Department of Health. Leptospirosis. Department of Health; 2021.
  • Katz AR, Sasaki DM, Mumm AH, Escamilla J, Middleton CR, Romero SE. Leptospirosis on Oahu: an outbreak among military personnel associated with recreational exposure. Mil Med. 1997;162(2):101–104. doi:10.1093/milmed/162.2.1019038027
  • Amilasan A-ST, Ujiie M, Suzuki M, et al. Outbreak of Leptospirosis after Flood, the Philippines, 2009. Emerg Infect Dis. 2012;18(1):91–94. doi:10.3201/eid1801.10189222257492
  • Lau CL, Smythe LD, Craig SB, Weinstein P. Climate Change, Flooding, Urbanisation and Leptospirosis: fuelling the Fire? Trans R Soc Trop Med Hyg. 2010;104(10):631–638. doi:10.1016/j.trstmh.2010.07.00220813388
  • Timmusk S, Nevo E, Ayele F, Noe S, Niinemets Y. Fighting Fusarium Pathogens in the Era of Climate Change: a Conceptual Approach. Pathogens. 2020;9(6):419. doi:10.3390/pathogens9060419
  • Ortoneda M, Guarro J, Madrid Marta P, et al. Fusarium Oxysporum as a Multihost Model for the Genetic Dissection of Fungal Virulence in Plants and Mammals. Infect Immun. 2004;72(3):1760–1766. doi:10.1128/IAI.72.3.1760-1766.200414977985
  • Bertero A, Moretti A, Spicer LJ, Caloni F. Fusarium Molds and Mycotoxins: potential Species-Specific Effects. Toxins. 2018;10(6):244. doi:10.3390/toxins10060244
  • Wurster S, Tatara Alexander M, Albert Nathaniel D, et al. Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds. mBio. 2020;11(3):e01414–01420. doi:10.1128/mBio.01414-2032605990
  • Uejio CK, Mak S, Manangan A, Luber G, Bartlett KH. Climatic Influences on Cryptococcus Gattii Populations, Vancouver Island, Canada, 2002–2004. Emerg Infect Dis. 2015;21(11):1989. doi:10.3201/eid2111.14116126484590
  • Hoang LMN, Maguire JA, Doyle P, Fyfe M, Roscoe DL. Cryptococcus Neoformans Infections at Vancouver Hospital and Health Sciences Centre (1997 2002): epidemiology, Microbiology and Histopathology. J Med Microbiol. 2004;53(9):935–940. doi:10.1099/jmm.0.05427-015314203
  • Lester SJ, Malik R, Bartlett KH, Duncan CG. Cryptococcosis: update and Emergence of Cryptococcus Gattii. Veterinary Clin Pathol. 2011;40(1):4–17. doi:10.1111/j.1939-165X.2010.00281.x
  • Diaz JH. The Disease Ecology, Epidemiology, Clinical Manifestations, and Management of Emerging Cryptococcus Gattii Complex Infections. Wilderness Environ Med. 2020;31(1):101–109. doi:10.1016/j.wem.2019.10.00431813737
  • Kidd SE, Chow Y, Mak S, et al. Characterization of Environmental Sources of the Human and Animal Pathogen Cryptococcus Gattii in British Columbia, Canada, and the Pacific Northwest of the United States. Appl Environ Microbiol. 2007;73(5):1433–1443. doi:10.1128/AEM.01330-0617194837
  • Centers for Disease Control and Prevention. Emergence of Cryptococcus Gattii–Pacific Northwest, 2004–2010. MMWR Morb Mortal Wkly Rep. 2010;59(28):865–868.20651641
  • Rosas ÁL, Casadevall A. Melanization Affects Susceptibility of Cryptococcus Neoformans to Heat and Cold. FEMS Microbiol Lett. 1997;153(2):265–272. doi:10.1016/S0378-1097(97)00239-59271852
  • Wang Y, Casadevall A. Decreased Susceptibility of Melanized Cryptococcus Neoformans to UV Light. Appl Environ Microbiol. 1994;60(10):3864–3866. doi:10.1128/aem.60.10.3864-3866.19947986054
  • Schiave LA, Pedroso RS, Candido RC, Roberts DW, Braga GUL. Variability in UVB Tolerances of Melanized and Nonmelanized Cells of Cryptococcus Neoformans and C. laurentii. Photochem Photobiol. 2009;85(1):205–213. doi:10.1111/j.1751-1097.2008.00418.x18764906
  • Jackson BR, Chow N, Forsberg K, et al. On the Origins of a Species: what Might Explain the Rise of Candida Auris? J Fungi. 2019;5(3):58. doi:10.3390/jof5030058
  • Chase AB, Weihe C, Martiny JBH. Adaptive Differentiation and Rapid Evolution of a Soil Bacterium Along a Climate Gradient. Proc National Acad Sci. 2021;118(18):e2101254118. doi:10.1073/pnas.2101254118
  • Fann N, Brennan T, Dolwick P, et al. Ch. 3: air Quality Impacts. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. Washington, DC: U.S. Global Change Research Program; 2016:69–98.
  • Bell JE, Herring SC, Jantarasami L, et al. Ch. 4: impacts of Extreme Events on Human Health. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. Washington, DC: U.S. Global Change Research Program; 2016:99–128.
  • Kobziar LN, Thompson GR. Wildfire smoke, a potential infectious agent. Science. 2020;370(6523):1408–1410. doi:10.1126/science.abe811633335049
  • Fear VS, Boyd JH, Rea S, Wood FM, Duke JM, Fear MW. Burn Injury Leads to Increased Long-Term Susceptibility to Respiratory Infection in Both Mouse Models and Population Studies. PLoS One. 2017;12(1):e0169302–e0169302. doi:10.1371/journal.pone.016930228068397
  • Palmieri TL. Infection prevention: unique aspects of burn units. Surg Infect (Larchmt). 2019;20(2):111–114. doi:10.1089/sur.2018.30130676249
  • Strassle PD, Williams FN, Weber DJ, et al. Risk factors for healthcare-associated infections in adult burn patients. Infect Control Hospital Epidemiol. 2017;38(12):1441–1448. doi:10.1017/ice.2017.220
  • Sobouti B, Dahmardehei M, Fallah S, Karrobi M, Ghavami Y, Vaghardoost R. Candidemia in Pediatric Burn Patients: risk Factors and Outcomes in a Retrospective Cohort Study. Curr Med Mycol. 2020;6(3):33. doi:10.18502/cmm.6.3.466333834141
  • Capoor MR, Sarabahi S, Tiwari VK, Narayanan RP. Fungal infections in burns: diagnosis and management. Indian J Plastic Surg. 2010;43(S 01):S37–S42. doi:10.4103/0970-0358.70718
  • Kobziar LN, Pingree MRA, Larson H, Dreaden TJ, Green S, Smith JA. Pyroaerobiology: the aerosolization and transport of viable microbial life by wildland fire. Ecosphere. 2018;9(11):e02507. doi:10.1002/ecs2.2507
  • Moore RA, Bomar C, Kobziar LN, Christner BC. Wildland Fire as an Atmospheric Source of Viable Microbial Aerosols and Biological Ice Nucleating Particles. ISME J. 2021;15(2):461–472. doi:10.1038/s41396-020-00788-833009511
  • Mulliken JSRA, Fung M, Babik JM, Doernberg SB Is Exposure to Wildfires Associated with Invasive Fungal Infections? [Abstract]. Paper presented at: American Transplant Congress; 2019.
  • Kobziar LN. Potential Pathogens Identified in Wildland Fire Smoke. Hauser N, ed; 2021
  • Elbert W, Taylor PE, Andreae MO, Pöschl U. Contribution of Fungi to Primary Biogenic Aerosols in the Atmosphere: wet and Dry Discharged Spores, Carbohydrates, and Inorganic Ions. Atmospheric Chem Phys. 2007;7(17):4569–4588. doi:10.5194/acp-7-4569-2007
  • Sherry NL, Padiglione AA, Spelman DW, Cleland H. Microbiology of Wildfire Victims Differs Significantly from Routine Burns Patients: data from an Australian Wildfire Disaster. Burns. 2013;39(2):331–334. doi:10.1016/j.burns.2012.07.01722871555
  • Biesiada G, Czepiel J, Leśniak MR, Garlicki A, Mach T. Lyme disease: review. Arch Med Sci. 2012;8(6):978–982. doi:10.5114/aoms.2012.3094823319969
  • Estrada-Peña A, Ayllón N, de la Fuente J. Impact of climate trends on tick-borne pathogen transmission. Front Physiol. 2012;3:64. doi:10.3389/fphys.2012.0006422470348
  • Ogden NH, Lindsay LR. Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol. 2016;32(8):646–656. doi:10.1016/j.pt.2016.04.01527260548
  • Ogden Nicholas H, Radojevic´ M, Wu X, Duvvuri Venkata R, Leighton Patrick A, Wu J. Estimated Effects of Projected Climate Change on the Basic Reproductive Number of the Lyme Disease Vector Ixodes Scapularis. Environ Health Perspect. 2014;122(6):631–638. doi:10.1289/ehp.130779924627295
  • Leighton PA, Koffi JK, Pelcat Y, Lindsay LR, Ogden NH. Predicting the Speed of Tick Invasion: an Empirical Model of Range Expansion for the Lyme Disease Vector Ixodes Scapularis in Canada. J App Ecol. 2012;49(2):457–464. doi:10.1111/j.1365-2664.2012.02112.x
  • Simon JA, Marrotte RR, Desrosiers N, et al. Climate Change and Habitat Fragmentation Drive the Occurrence of Borrelia Burgdorferi, the Agent of Lyme Disease, at the Northeastern Limit of Its Distribution. Evol Appl. 2014;7(7):750–764. doi:10.1111/eva.1216525469157
  • Roy-Dufresne E, Logan T, Simon JA, Chmura GL, Millien V. Poleward Expansion of the White-Footed Mouse (Peromyscus Leucopus) under Climate Change: implications for the Spread of Lyme Disease. PLoS One. 2013;8(11):e80724–e80724. doi:10.1371/journal.pone.008072424260464
  • Rounsville TF, Dill GM, Bryant AM, Desjardins CC, Dill JF. Statewide Passive Surveillance of Ixodes Scapularis and Associated Pathogens in Maine. Vector Borne Zoonotic Dis. 2021;21(6):406–412. doi:10.1089/vbz.2020.272433661033
  • Boorgula GDY, Peterson AT, Foley DH, Ganta RR, Raghavan RK. Assessing the Current and Future Potential Geographic Distribution of the American Dog Tick, Dermacentor Variabilis (Say)(Acari: Ixodidae) in North America. PLoS One. 2020;15(8):e0237191. doi:10.1371/journal.pone.023719132776959
  • Pascoe EL, Plourde BT, Lopéz-Perez AM, Foley JE. Response of small mammal and tick communities to a catastrophic wildfire and implications for tick-borne pathogens. J Vector Ecol. 2020;45(2):269–284. doi:10.1111/jvec.1239833207067
  • Pastula DM, Smith DE, Beckham JD, Tyler KL. Four Emerging Arboviral Diseases in North America: Jamestown Canyon, Powassan, Chikungunya, and Zika Virus Diseases. J Neurovirol. 2016;22(3):257–260. doi:10.1007/s13365-016-0428-526903031
  • Ronca SE, Ruff JC, Murray KO. A 20-Year Historical Review of West Nile Virus since Its Initial Emergence in North America: has West Nile Virus Become a Neglected Tropical Disease? PLoS Negl Trop Dis. 2021;15(5):e0009190. doi:10.1371/journal.pntd.000919033956816
  • IDMC. Global Report on Internal Displacement. Geneva, Switzerland: Internal Displacement Monitoring Centre; 2020.
  • McMichael C. Climate change-related migration and infectious disease. Virulence. 2015;6(6):548–553. doi:10.1080/21505594.2015.102153926151221
  • Black R. Environmental Refugees: myth or Reality? United Nations High Commissioner for Refugees. New issues in refugee research, working paper 34; 2001.
  • Brown O. Climate Change and Forced Migration: Observations, Projections and Implications. Human Development Report Office (HDRO), United Nations Development Programme; 2007.
  • Freeman L. Environmental change, migration, and conflict in Africa: a critical examination of the interconnections. J Environ Dev. 2017;26(4):351–374. doi:10.1177/1070496517727325
  • King D, Bird D, Haynes K, et al. Voluntary relocation as an adaptation strategy to extreme weather events. Int J Disaster Risk Reduction. 2014;8:83–90. doi:10.1016/j.ijdrr.2014.02.006
  • Schütte S, Gemenne F, Zaman M, Flahault A, Depoux A. Connecting planetary health, climate change, and migration. Lancet Planetary Health. 2018;2(2):e58–e59. doi:10.1016/S2542-5196(18)30004-429615235
  • Raleigh C, Jordan L. Assessing the Impact of Climate Change on Migration and Conflict. Washington, DC: Inpaper commissioned by the World Bank Group for the Social Dimensions of Climate Change workshop; 2008.
  • Feng S, Krueger AB, Oppenheimer M. Linkages among Climate Change, Crop Yields and Mexico–Us Cross-Border Migration. Proc National Acad Sci. 2010;107(32):14257. doi:10.1073/pnas.1002632107
  • Steffens G. Changing Climate Forces Desperate Guatemalans to Migrate. National Geographic; 2018. Available from: https://www.nationalgeographic.com/environment/article/drought-climate-change-force-guatemalans-migrate-to-us. Accessed July 30, 2021.
  • UNHCR. Climate Change and Disaster Displacement. UN Refugee Agency; 2021.
  • McMichael AJ. Globalization, climate change, and human health. N Engl J Med. 2013;368(14):1335–1343. doi:10.1056/NEJMra110934123550671
  • Yee EL, Palacio H, Atmar RL, et al. Widespread Outbreak of Norovirus Gastroenteritis among Evacuees of Hurricane Katrina Residing in a Large “Megashelter” in Houston, Texas: lessons Learned for Prevention. Clin Infect Dis. 2007;44(8):1032–1039. doi:10.1086/51219517366445
  • Dayrit JF, Sugiharto A, Coates SJ, Lucero-Prisno DE, Davis MDD, Andersen LK. Climate Change, Human Migration, and Skin Disease: is There a Link? Int J Dermatol. 2021. doi:10.1111/ijd.15543
  • Pepi M, Focardi S. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: a Challenge for Health in the Mediterranean Area. Int J Environ Res Public Health. 2021;18(11):5723. doi:10.3390/ijerph1811572334073520
  • Burnham JP. Climate change and antibiotic resistance: a deadly combination. Ther Adv Infect Dis. 2021;8:2049936121991374. doi:10.1177/204993612199137433643652
  • MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic resistance increases with local temperature. Nat Clim Chang. 2018;8(6):510–514. doi:10.1038/s41558-018-0161-630369964
  • Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev. 1994;58(3):563–602. doi:10.1128/mr.58.3.563-602.19947968924
  • Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of Ndm-1 Positive Bacteria in the New Delhi Environment and Its Implications for Human Health: an Environmental Point Prevalence Study. Lancet Infect Dis. 2011;11(5):355–362. doi:10.1016/S1473-3099(11)70059-721478057
  • Shah HN, Gharbia SE. The impact of the environment on human infections. Microb Ecol Health Dis. 1999;11(4):248–254. doi:10.1080/08910609908540835
  • Nsuami MJ, Taylor SN, Smith BS, Martin DH. Increases in gonorrhea among high school students following hurricane Katrina. Sex Transm Infect. 2009;85(3):194. doi:10.1136/sti.2008.03178118955385
  • Ekperi LI, Thomas E, LeBlanc TT, et al. The impact of hurricane Sandy on HIV testing rates: an interrupted time series analysis, January 1, 2011‒December 31, 2013. PLoS Curr. 2018;10. doi:10.1371/currents.dis.ea09f9573dc292951b7eb0cf9f395003
  • Eckelman MJ, Huang K, Lagasse R, Senay E, Dubrow R, Sherman JD. Health care pollution and public health damage in the United States: an update. Health Aff. 2020;39(12):2071–2079. doi:10.1377/hlthaff.2020.01247
  • NOAA, Climate.gov. Available from https://www.climate.gov/media/12884. Accessed December 12, 2021