139
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Emergence of the Coexistence of mcr-1, blaNDM-5, and blaCTX-M-55 in Klebsiella pneumoniae ST485 Clinical Isolates in China

, , , , , , , , , & show all
Pages 3449-3458 | Published online: 28 Aug 2021

References

  • AratoV, RasoMM, GasperiniG, et al. Prophylaxis and treatment against Klebsiella pneumoniae: current insights on this emerging anti-microbial resistant global threat. Int J Mol Sci. 2021;22(8):4042. doi:10.3390/ijms2208404233919847
  • ZhanL, WangS, GuoY, et al. Outbreak by hypermucoviscous Klebsiella pneumoniae ST11 isolates with carbapenem resistance in a tertiary hospital in China. Front Cell Infect Microbiol. 2017;7:182. doi:10.3389/fcimb.2017.0018228560183
  • ChavdaB, LvJ, HouM, et al. Coidentification of mcr-4.3 and blaNDM-1 in a clinical Enterobacter cloacae isolate from China. Antimicrob Agents Chemother. 2018;62(10):e00649–18. doi:10.1128/AAC.00649-1830038043
  • HusseinM, HanML, ZhuY, et al. Metabolomics study of the synergistic killing of polymyxin B in combination with amikacin against polymyxin-susceptible and -resistant pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;64(1):e01587–19. doi:10.1128/AAC.01587-1931611351
  • MoffattJH, HarperM, HarrisonP, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010;54(12):4971–4977. doi:10.1128/AAC.00834-1020855724
  • BonuraCMC, BernardoFD, AleoA, et al. Ongoing spread of colistin-resistant Klebsiella pneumoniae in different wards of an acute general hospital, Italy, June to December 2011. Euro Surveill. 2012;17(33):20248. doi:10.1186/1475-2875-11-27722913977
  • LiuYY, WangY, WalshTR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168. doi:10.1016/s1473-3099(15)00424-726603172
  • QuanJ, LiX, ChenY, et al. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study. Lancet Infect Dis. 2017;17(4):400–410. doi:10.1016/s1473-3099(16)30528-x28139430
  • YangRS, FengY, LvXY, et al. Emergence of NDM-5- and MCR-1-producing Escherichia coli clones ST648 and ST156 from a Single Muscovy Duck (Cairina moschata). Antimicrob Agents Chemother. 2016;60(11):6899–6902. doi:10.1128/AAC.01365-1627550364
  • ZhangY, LiaoK, GaoH, et al. Decreased fitness and virulence in ST10 Escherichia coli harboring blaNDM-5 and mcr-1 against a ST4981 strain with blaNDM-5. Front Cell Infect Microbiol. 2017;7:242. doi:10.3389/fcimb.2017.0024228642846
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 28th. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standard Institute; 2018.
  • The European Committee on Antimicrobial susceptibility testing breakpoint tables for interpretation of MICs and zone diameters. Version 6.0,2016. Available from: http://www.eucast.org. Accessed March 30,2016.
  • YangF, ShenC, ZhengX, et al. Plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli and Klebsiella pneumoniae isolated from market retail fruits in Guangzhou, China. Infect Drug Resist. 2019;12:385–389. doi:10.2147/idr.s19463530809099
  • ChenL, HuH, ChavdaKD, et al. Complete sequence of a KPC-producing IncN multidrug-resistant plasmid from an epidemic Escherichia coli sequence type 131 strain inChina. Antimicrob Agents Chemother. 2014;58(4):2422–2425. doi:10.1128/aac.02587-1324395232
  • WangZ, LiM, ShenX, et al. Outbreak of blaNDM-5-harboring Klebsiella pneumoniae ST290 in a tertiary hospital in China. Microb Drug Resist. 2019;25(10):1443–1448. doi:10.1089/mdr.2019.004631334685
  • HuL, LiuY, DengL, et al. Outbreak by ventilator-associated ST11 K. pneumoniae with co-production of CTX-M-24 and KPC-2 in a SICU of a tertiary teaching hospital in central China. Front Microbiol. 2016;7:1190. doi:10.3389/fmicb.2016.0119027531996
  • YongD, TolemanMA, GiskeCG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–5054. doi:10.1128/AAC.00774-0919770275
  • HuL, ZhongQ, TuJ, et al. Emergence of blaNDM-1 among Klebsiella pneumoniae ST15 and novel ST1031 clinical isolates in China. Diagn Microbiol Infect Dis. 2013;75(4):373–376. doi:10.1016/j.diagmicrobio.2013.01.00623453788
  • MendesAC, NovaisA, CamposJ, et al. mcr-1 in carbapenemase-producing Klebsiella pneumoniae with hospitalized patients, Portugal, 2016–2017. Emerg Infect Dis. 2018;24(4):762–766. doi:10.3201/eid2404.17178729553327
  • WangR, van DorpL, ShawLP, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun. 2018;9(1):1–9. doi:10.1038/s41467-018-03205-z29317637
  • Di TellaD, TamburroM, GuerrizioG, et al. Molecular epidemiological insights into colistin-resistant and carbapenemases-producing clinical Klebsiella pneumoniae. Infect Drug Resist. 2019;Volume 12:3783–3795. doi:10.2147/idr.s226416
  • European Centre for Disease P., Control, A. European Food Safety. ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals: Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. EFSA J. 2017;15(7):e04872. doi:10.2903/j.efsa.2017.487232625542
  • LiuH, LinH, SunZ, et al. Distribution of beta-lactamase genes and genetic context of bla KPC-2 in clinical carbapenemase-producing Klebsiella pneumoniae Isolates. Infect Drug Resist. 2021;14:237–247. doi:10.2147/IDR.S29043433536766
  • XiaoY, HangY, ChenY, et al. A retrospective analysis of risk factors and patient outcomes of bloodstream infection with extended-spectrum beta-lactamase-producing Escherichia coli in a Chinese tertiary hospital. Infect Drug Resist. 2020;13:4289–4296. doi:10.2147/IDR.S26998933262623
  • ZhangJ, YuL, FuY, et al. Tigecycline in combination with other antibiotics against clinical isolates of carbapenem-resistant Klebsiella pneumoniae in vitro. Ann Palliat Med. 2019;8(5):622–631. doi:10.21037/apm.2019.09.1131735038
  • GongJ, SuD, ShangJ, et al. Efficacy and safety of high-dose tigecycline for the treatment of infectious diseases: a meta-analysis. Medicine. 2019;98(38):e17091. doi:10.1097/MD.000000000001709131567945
  • YuL, ZhangJ, FuY, et al. Synergetic effects of combined treatment of colistin with meropenem or amikacin on carbapenem-resistant Klebsiella pneumoniae in vitro. Front Cell Infect Microbiol. 2019;9:422. doi:10.3389/fcimb.2019.0042231921701
  • Ayoub MoubareckC. Polymyxins and bacterial membranes: a review of antibacterial activity and mechanisms of resistance. Membranes. 2020;10(8):181. doi:10.3390/membranes10080181
  • PoirelL, JayolA, NordmannP. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30(2):557–596. doi:10.1128/CMR.00064-1628275006
  • PetrosilloN, TagliettiF, GranataG. Treatment options for colistin resistant Klebsiella pneumoniae: present and future. J Clin Med. 2019;8(7):934. doi:10.3390/jcm8070934