194
Views
1
CrossRef citations to date
0
Altmetric
Original Research

The First Saudi Study Investigating the Plasmid-borne Aminoglycoside and Sulfonamide Resistance among Acinetobacter baumannii Clinical Isolates Genotyped by RAPD-PCR: the Declaration of a Novel Allelic Variant Called aac(6ʹ)-SL and Three Novel Mutations in the sul1 Gene in the Acinetobacter Plasmid (s)

ORCID Icon, , , ORCID Icon &
Pages 4739-4756 | Published online: 12 Nov 2021

References

  • Williams CL, Neu HM, Alamneh YA, et al. Characterization of Acinetobacter baumannii copper resistance reveals a role in virulence. Front Microbiol. 2020;11:16. doi:10.3389/fmicb.2020.0001632117089
  • El-Badawy MF, Abdelwahab SF, Alghamdi SA, Shohayeb MM. Characterization of phenotypic and genotypic traits of carbapenem-resistant Acinetobacter baumannii clinical isolates recovered from a tertiary care hospital in Taif, Saudi Arabia. Infect Drug Resist. 2019;12:3113. doi:10.2147/IDR.S20669131632100
  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev. 2017;30(1):409–447. doi:10.1128/CMR.00058-1627974412
  • Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol. 2006;44:2974–2976. doi:10.1128/JCM.01021-0616891520
  • Khurshid M, Rasool MH, Ashfaq UA, et al. Acinetobacter baumannii sequence types harboring genes encoding aminoglycoside modifying enzymes and 16SrRNA methylase; a Multicenter Study from Pakistan. Infect Drug Resis. 2020;13:2855. doi:10.2147/IDR.S260643
  • López-Durán PA, Fonseca-Coronado S, Lozano-Trenado LM, et al. Nosocomial transmission of extensively drug resistant Acinetobacter baumannii strains in a tertiary level hospital. PLoS One. 2020;15:e0231829. doi:10.1371/journal.pone.023182932302355
  • Du X, Xu X, Yao J, et al. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: a systematic review and meta-analysis. Am J Infect Control. 2019;47:1140–1145. doi:10.1016/j.ajic.2019.03.00331003750
  • Control CfD. Prevention Antibiotic Resistance Threats in the United States. Atlanta, GA: CDC; 2013.
  • Shrivastava SR, Shrivastava PS, Ramasamy J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J Med Soc. 2018;32:76. doi:10.4103/jms.jms_25_17
  • Kong J, Wu Z-X, Wei L, Chen Z-S, Yoganathan S. Exploration of antibiotic activity of aminoglycosides, in particular ribostamycin alone and in combination with ethylenediaminetetraacetic acid against pathogenic bacteria. Front Microbiol. 2020;11:1718. doi:10.3389/fmicb.2020.0171832849365
  • Kotra LP, Haddad J, Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother. 2000;44(12):3249–3256. doi:10.1128/AAC.44.12.3249-3256.200011083623
  • Magnet S, Blanchard JS. Molecular insights into aminoglycoside action and resistance. Chem Rev. 2005;105(2):477–498. doi:10.1021/cr030108815700953
  • Wachino J-I, Doi Y, Arakawa Y. Aminoglycoside resistance: updates with a focus on acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin. 2020;34(4):887–902. doi:10.1016/j.idc.2020.06.002
  • Galimand M, Sabtcheva S, Courvalin P, Lambert T. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob Agents Chemother. 2005;49:2949–2953. doi:10.1128/AAC.49.7.2949-2953.200515980373
  • Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harb Perspect Med. 2016;6(6):a027029. doi:10.1101/cshperspect.a02702927252397
  • Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev. 2003;16(3):430–450. doi:10.1128/CMR.16.3.430-450.200312857776
  • El-Badawy MF, Tawakol WM, El-Far SW, et al. Molecular identification of aminoglycoside-modifying enzymes and plasmid-mediated quinolone resistance genes among Klebsiella pneumoniae clinical isolates recovered from Egyptian patients. InterJ Microbiol. 2017;2017. doi:10.1155/2017/8050432
  • Aishwarya KVL, Geetha PV, Eswaran S, Mariappan S, Sekar U. Spectrum of aminoglycoside modifying enzymes in gram-negative bacteria causing human infections. J Lab Phys. 2020;12:27.
  • McGann P, Chahine S, Okafor D, et al. Detecting 16S rRNA methyltransferases in Enterobacteriaceae by use of Arbekacin. J Clin Microbiol. 2016;54:208–211. doi:10.1128/JCM.02642-1526537447
  • Bickel MH. The development of sulfonamides (1932–1938) as a focal point in the history of chemotherapy. Gesnerus. 1988;45:67–86. doi:10.1163/22977953-045010063042521
  • Byrne-Bailey K, Gaze W, Kay P, Boxall A, Hawkey P, Wellington E. Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrob Agents Chemother. 2009;53(2):696–702. doi:10.1128/AAC.00652-0719064898
  • Sköld O. Sulfonamide resistance: mechanisms and trends. Drug Resist Updat. 2000;3(3):155–160. doi:10.1054/drup.2000.014611498380
  • Rolbiecki D, Harnisz M, Korzeniewska E, Jałowiecki Ł, Płaza G. Occurrence of fluoroquinolones and sulfonamides resistance genes in wastewater and sludge at different stages of wastewater treatment: a preliminary case study. Appl Sci. 2020;10(17):5816. doi:10.3390/app10175816
  • Jiang H, Cheng H, Liang Y, et al. Diverse mobile genetic elements and conjugal transferability of sulfonamide resistance genes (sul1, sul2, and sul3) in Escherichia coli isolates from Penaeus vannamei and pork from large markets in Zhejiang, China. Front Microbiol. 2019;10:1787. doi:10.3389/fmicb.2019.0178731428076
  • Wu S, Dalsgaard A, Hammerum AM, Porsbo LJ, Jensen LB. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human. Acta Vet Scand. 2010;52:47. doi:10.1186/751-0147-52-4720670455
  • Perreten V, Boerlin P. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother. 2003;47(3):1169–1172. doi:10.1128/AAC.47.3.1169-1172.200312604565
  • Butler JM. Non-human DNA. Advanced Topics in Forensic DNA Typing: Methodology. Elsevier; 2012:473–495. doi:10.1016/B978-0-12-374513-2.00016-6
  • Qaiyumi S. Macro- and microdilution methods of antimicrobial susceptibility testing. In: Schwalbe R, Steele-Moore L, Goodwin AC, editors. Antimicrobial Susceptibility Testing Protocols. 1st edition. Boca Raton: CRC Press; 2007:75–79.
  • Cockerill FR. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement. Wayne, PA: CLSI; 2011:29.
  • Yang C-H, Su P-W, Moi S-H, Chuang L-Y. Biofilm formation in Acinetobacter baumannii: genotype-phenotype correlation. Molecules. 2019;24(10):1849. doi:10.3390/molecules24101849
  • Nie L, Lv Y, Yuan M, et al. Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China. Acta Pharm Sin B. 2014;4(4):295–300. doi:10.1016/j.apsb.2014.06.00426579398
  • Upadhyay S, Khyriem AB, Bhattacharya P, Bhattacharjee A, Joshi SR. High-level aminoglycoside resistance in Acinetobacter baumannii recovered from intensive care unit patients in Northeastern India. Indian J Med Microbiol. 2018;36(1):43–48. doi:10.4103/ijmm.IJMM_17_22529735825
  • Doi Y, Adams JM, Yamane K, Paterson DL. Identification of 16S rRNA methylase-producing Acinetobacter baumannii clinical strains in North America. Antimicrob Agents Chemother. 2007;51(11):4209–4210. doi:10.1128/AAC.00560-0717785513
  • El-Badawy MF, El-Far SW, Althobaiti SS, Abou-Elazm FI, Shohayeb MM. The first Egyptian report showing the co-existence of blaNDM-25, blaOXA-23, blaOXA-181, and blaGES-1 among carbapenem-resistant K. pneumoniae clinical isolates genotyped by BOX-PCR. Infect Drug Resist. 2020;13:1237. doi:10.2147/IDR.S24406432425561
  • Aguado V, Vitas A, Garcia-Jalon I. Random amplified polymorphic DNA typing applied to the study of cross-contamination by Listeria monocytogenes in processed food products. J Food Prot. 2001;64(5):716–720. doi:10.4315/0362-028X-64.5.71611348007
  • El-Badawy MF, Tawakol WM, Maghrabi IA, Mansy MS, Shohayeb MM, Ashour MS. Iodometric and molecular detection of ESBL production among clinical isolates of E. coli fingerprinted by ERIC-PCR: the first Egyptian report declares the emergence of E. coli O25b-ST131clone harboring bla GES. Microb Drug Resist. 2017;23(6):703–717. doi:10.1089/mdr.2016.018128099061
  • Georgios M, Egki T, Effrosyni S. Phenotypic and molecular methods for the detection of antibiotic resistance mechanisms in gram negative nosocomial pathogens. Tren Infect Dis. 2014:139–162. doi:10.5772/57582.
  • Mir AR, Bashir Y, Dar FA, Sekhar M. Identification of genes coding aminoglycoside modifying enzymes in E. coli of UTI patients in. India Sci World J. 2016;2016. doi:10.1155/2016/1875865
  • Ranjbar R, Masoudimanesh M, Dehkordi FS, Jonaidi-Jafari N, Rahimi E. Shiga (Vero)-toxin-producing Escherichia coli isolated from the hospital foods; virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrob Resist Infect Control. 2017;6(1):1–11. doi:10.1186/s13756-13016-10163-y
  • Patterson J, Chamberlian B, Thayer D. FinchTv Software40 Version 1.5.0. Geospiza Inc; 2019. Available from: https://digitalworldbiology.com/FinchTV. Accessed September 13, 2021.
  • National Center for Biotechnology Information, U.S. National Library of Medicine.Homepage. Available from: https://www.ncbi.nlm.nih.gov/. Accessed September 13, 2021.
  • National Center for Biotechnology Information, U.S. National Library of Medicine. Open Reading Frame Finder. Available from: https://www.ncbi.nlm.nih.gov/orffinder. Accessed September 13, 2021.
  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. doi:10.1093/bioinformatics/btp03319151095
  • National Center for Biotechnology Information, U.S. National Library of Medicine. GenBank Overview. Available from: www.ncbi.nlm.nih.gov/genbank/. Accessed September 13, 2021.
  • National Center for Biotechnology Information, U.S. National Library of Medicine. Submission Portal. Available from: https://submit.ncbi.nlm.nih.gov/. Accessed September 13, 2021.
  • BioNumerics: bioNumerics version (the version you are using) created by applied maths NV. Available from: https://www.applied-maths.com. Accessed September 13, 2021.
  • El-Badawy MF, Alrobaian MM, Shohayeb MM, Abdelwahab SF. Investigation of six plasmid-mediated quinolone resistance genes among clinical isolates of pseudomonas: a genotypic study in Saudi Arabia. Infect Drug Resist. 2019;12:915–923. doi:10.2147/IDR.S20328831118699
  • Yezli S, Shibl AM, Livermore DM, Memish ZA. Prevalence and antimicrobial resistance among gram-negative pathogens in Saudi Arabia. J Chemother. 2014;26:257–272. doi:10.1179/1973947814Y.000000018524669827
  • Ibrahim ME. Prevalence of Acinetobacter baumannii in Saudi Arabia: risk factors, antimicrobial resistance patterns and mechanisms of carbapenem resistance. Ann Clin Microbiol Antimicrob. 2019;18:1–12. doi:10.1186/s12941-018-0301-x30606201
  • Moaz A, Shannon K, Phillips I. Mechanisms of gentamicin resistance in gram-negative bacilli in Riyadh, Kingdom of Saudi Arabia. J Antimicrob Chemother. 1989;24:689–698. doi:10.1093/jac/24.5.6892599993
  • Memish ZA, Shibl AM, Kambal AM, Ohaly YA, Ishaq A, Livermore DM. Antimicrobial resistance among non-fermenting gram-negative bacteria in Saudi Arabia. J Antimicrob Chemother. 2012;67:1701–1705. doi:10.1093/jac/dks09122461312
  • Zhang G, Leclercq SO, Tian J, et al. A new subclass of intrinsic aminoglycoside nucleotidyltransferases, ANT (3”)-II, is horizontally transferred among Acinetobacter spp. by homologous recombination. PLoS Genet. 2017;13:e1006602. doi:10.1371/journal.pgen28152054
  • Haseeb A, Faidah HS, Bakhsh AR, et al. Antimicrobial resistance among pilgrims: a retrospective study from two hospitals in Makkah, Saudi Arabia. Int J Infect Dis. 2016;47:92–94. doi:10.1016/j.ijid.2016.06.00627312582
  • Abdalhamid B, Hassan H, Itbaileh A, Shorman M. Characterization of carbapenem-resistant Acinetobacter baumannii clinical isolates in a tertiary care hospital in Saudi Arabia. New Microbiol. 2014;37:65–73.24531172
  • Almaghrabi MK, Joseph MR, Assiry MM, Hamid ME. Multidrug-resistant Acinetobacter baumannii: an emerging health threat in aseer region, Kingdom of Saudi Arabia. Can J Infect Dis Med Microbiol. 2018;2018. doi:10.1155/2018/9182747
  • Polotto M, Casella T, Tolentino FM, et al. Investigation of carbapenemases and aminoglycoside modifying enzymes of Acinetobacter baumannii isolates recovered from patients admitted to intensive care units in a tertiary-care hospital in Brazil. Rev Soc Bras Med Trop. 2020;53. doi:10.1590/0037-8682-0094-2019
  • Jouybari MA, Ahanjan M, Mirzaei B, Goli HR. Role of aminoglycoside-modifying enzymes and 16S rRNA methylase (ArmA) in resistance of Acinetobacter baumannii clinical isolates against aminoglycosides. Rev Soc Bras Med Trop. 2021;54. doi:10.1590/0037-8682-0599-2020
  • Lee C-R, Cho IH, Jeong BC, Lee SH. Strategies to minimize antibiotic resistance. Inter J Environ Res Pub Health. 2013;10:4274–4305. doi:10.3390/ijerph10094274
  • Kim D-W, Thawng CN, Choi J-H, Lee K, Cha C-J. Polymorphism of antibiotic-inactivating enzyme driven by ecology expands the environmental resistome. ISME J. 2018;12:267–276. doi:10.1038/ismej.2017.16829028006
  • Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens. 2021;10(3):373. doi:10.3390/pathogens1003037333808905
  • Tavakol M, Momtaz H, Mohajeri P, Shokoohizadeh L, Tajbakhsh E. Genotyping and distribution of putative virulence factors and antibiotic resistance genes of Acinetobacter baumannii strains isolated from raw meat. Antimicrob Resist Infect Control. 2018;7(1):1–11. doi:10.1186/s13756-018-0405-229312658