101
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Clostridioides difficile Ribotype 027 (RT027) Outbreak Investigation Due to the Emergence of Rifampicin Resistance Using Multilocus Variable-Number Tandem Repeat Analysis (MLVA)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3247-3254 | Published online: 17 Aug 2021

References

  • MarraAR, PerencevichEN, NelsonRE, et al. Incidence and outcomes associated with Clostridium difficile infections: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(1):e1917597. doi:10.1001/jamanetworkopen.2019.1759731913488
  • Główny Inspektorat Sanitarny. Stan sanitarny kraju w roku 2019. Available from:https://www.gov.pl/attachment/f3c11d2c-1395-4b6f-9e1e-d333b0d460b3. Accessed 84, 2021.
  • Annual Epidemiological Report for 2016. Healthcare-associated infections: Clostridium difficile infections. Available from:https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2016-C-difficile_0.pdf. Accessed 84, 2021.
  • McDonaldLC, KillgoreGE, ThompsonA, et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med. 2005;353(23):2433–2441. doi:10.1056/NEJMoa05159016322603
  • AptekorzM, SzczegielniakA, WiechułaB, HarmanusC, KuijperEJ, MartirosianG. Occurrence of Clostridium difficile ribotype 027 in hospitals of Silesia, Poland. Anaerobe. 2017;45:106–113. doi:10.1016/j.anaerobe.2017.02.00228216085
  • KabałaM, AptekorzM, MartirosianG. The role of hospital environment and the hands of medical staff in the transmission of the Clostridioides (Clostridium) difficile infection. Med Pr. 2019;70(6):739–745. doi:10.13075/mp.5893.0085631535670
  • AbtMC, McKenneyPT, PamerEG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016;14(10):609–620. doi:10.1038/nrmicro.2016.10827573580
  • KozákováJ, OkonjiZ, MusílekM. Clonal characterisation of Streptococcus pneumoniae strains using MLST and MLVA - can MLVA improve the characterisation?Epidemiol Mikrobiol Imunol. 2020;69(1):20–28.32326712
  • NejatiF, FatehAI, NojoumiSA, et al. MLVA typing of haemophilus influenzae isolated from two Iranian university hospitals Iran. J Microbiol. 2018;10(1):30–36.
  • EyreDW, FawleyWN, BestEL, et al. Comparison of multilocus variable-number tandem-repeat analysis and whole-genome sequencing for investigation of Clostridium difficile transmission. J Clin Microbiol. 2013;51(12):4141–4149. doi:10.1128/JCM.01095-1324108611
  • European Surveillance of Clostridioides (Clostridium) difficile infections. Surveillance protocol version 2.4. Available from:https://www.ecdc.europa.eu/sites/default/files/documents/clostridium-difficile-infections-EU-surveillance-protocol-vers2.4.pdf. Accessed 84, 2021.
  • PerssonS, TorpdahlM, OlsenKEP. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. 2008;14(11):1057–1064. doi:10.1111/j.1469-0691.2008.0209219040478
  • StubbsS, RupnikM, GibertM, BrazierJ, DuerdenB, PopoffM. Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol Lett. 2000;186(2):307–312. doi:10.1111/j.1574-6968.2000.tb09122.x10802189
  • van den BergRJ, SchaapI, TempletonKE, KlaassenCHW, KuijperEJ. Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J Clin Microbiol. 2007;45(3):1024–1028. doi:10.1128/JCM.02023-0617166961
  • FawleyWN, KnetschCW, MacCannellDR, et al. Development and validation of an internationally-standardized, high resolution capillary gel-based electrophoresis PCR ribotyping protocol for Clostridium difficile. PLoS One. 2015;10:e0118150. doi:10.1371/journal.pone.011815025679978
  • ChiouCS. Multilocus variable-number tandem repeat analysis as a molecular tool for subtyping and phylogenetic analysis of bacterial pathogens. Expert Rev Mol Diagn. 2010;10(1):5–7. doi:10.1586/erm.09.7620030027
  • ETEST application guide. Available from:https://www.biomerieux-usa.com/sites/subsidiary_us/files/supplementary_inserts_-_16273_-_b_-_en_-_eag_-_etest_application_guide-3.pdf. Accessed 84, 2021.
  • Krajowy Ośrodek Referencyjny ds. Lekowrażliwości Drobnoustrojów (KORLD) Zakład Epidemiologii i Mikrobiologii Klinicznej Narodowy Instytut Leków. Available from:https://korld.nil.gov.pl/pdf/Tabele%20EUCAST%202020_strona-popr.pdf. Accessed 84, 2021.
  • Van DorpSM, KinrossP, GastmeierP, et al. Standardised surveillance of Clostridium difficile infection in European acute care hospitals: a pilot study, 2013. Euro Surveill. 2016;21(29). doi:10.2807/1560-7917.ES.2016.21.29.30293
  • ClementsACA, Soares MagalhãesRJ, TatemAJ, PatersonDL, RileyTV. Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. Lancet Infect Dis. 2010;10(6):395–404. doi:10.1016/S1473-3099(10)70080-320510280
  • DaviesKA, AshwinH, LongshawCM, et al. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill. 2016;21(29). doi:10.2807/1560-7917.ES.2016.21.29.30294
  • BauerMP, NotermansDW, van BenthemBH, et al. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011;377(9759):63–73. doi:10.1016/S0140-6736(10)61266-421084111
  • KoraćM, RupnikM, NikolićN, et al. Clostridioides difficile ribotype distribution in a large teaching hospital in Serbia. Gut Pathog. 2020;12:26. doi:10.1186/s13099-020-00364-732477428
  • PopescuGA, SerbanR, PistolA, et al. The recent emergence of Clostridium difficile infection in Romanian hospitals is associated with a high prevalence of polymerase chain reaction ribotype 027. Balkan Med J. 2018;35(2):191–195. doi:10.4274/balkanmedj.2017.040029188783
  • FatimaR, AzizM. The hypervirulent strain of Clostridium difficile: NAP1/B1/027 - a brief overview. Cureus. 2019;11(1):e3977. doi:10.7759/cureus.397730967977
  • PituchH, Obuch-WoszczatyńskiP, LachowiczD, et al. Prevalence of Clostridium difficile infection in hospitalized patients with diarrhoea: results of a polish multicenter, prospective, biannual point-prevalence study. Adv Med Sci. 2018;63(2):290–295. doi:10.1016/j.advms.2018.03.00329665558
  • RomanoV, PasqualeV, LemeeL, et al. Clostridioides difficile in the environment, food, animals and humans in southern Italy: occurrence and genetic relatedness. Comp Immunol Microbiol Infect Dis. 2018;59:41–46. doi:10.1016/j.cimid.2018.08.00630290886
  • BergerFK, GfrörerS, BeckerSL, et al. Hospital outbreak due to Clostridium difficile ribotype 018 (RT018) in Southern Germany. Int J Med Microbiol. 2019;309(3–4):189–193. doi:10.1016/j.ijmm.2019.03.00130879971
  • FreemanJ, VernonJ, PillingS, et al. Five-year Pan-European, longitudinal surveillance of Clostridium difficile ribotype prevalence and antimicrobial rsistance: the extended ClosER study. Eur J Clin Microbiol Infect Dis. 2020;39(1):169–177. doi:10.1007/s10096-019-03708-731811507
  • SpigagliaP, BarbantiF, MastrantonioP. European Study group on C. difficile (ESGCD). Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother. 2011;66(10):2227–2234. doi:10.1093/jac/dkr29221771851
  • AbdrabouAMM, BajwaZUH, HalfmannA, et al. Molecular epidemiology and antimicrobial resistance of Clostridioides difficile in Germany, 2014–2019. Int J Med Microbiol. 2021;311(4):151507. doi:10.1016/j.ijmm.2021.15150733915347
  • TicklerIA, ObradovichAE, GoeringRV, et al. Changes in molecular epidemiology and antimicrobial resistance profiles of Clostridioides (Clostridium) difficile strains in the United States between 2011 and 2017. Anaerobe. 2019;60:102050. doi:10.1016/j.anaerobe.2019.06.00331173889
  • Obuch-WoszczatyńskiP, DubielG, HarmanusC, et al. Emergence of Clostridium difficile infection in tuberculosis patients due to a highly rifampicin-resistant PCR ribotype 046 clone in Poland. Eur J Clin Microbiol Infect Dis. 2013;32(8):1027–1030. doi:10.1007/s10096-013-1845-523443474
  • FärberJ, IlligerS, BergerF, et al. Management of a cluster of Clostridium difficile infections among patients with osteoarticular infections. Antimicrob Resist Infect Control. 2017;15:22. doi:10.1186/s13756-017-0181-4
  • NycO, KrutovaM, LiskovaA, MatejkovaJ, DrabekJ, KuijperEJ. The emergence of Clostridium difficile PCR-ribotype 001 in Slovakia. Eur J Clin Microbiol Infect Dis. 2015;34(8):1701–1708. doi:10.1007/s10096-015-2407-925981433
  • KrehelovaM, NyčO, SinajováE, KrutovaM. The predominance and clustering of Clostridioides difficile PCR ribotype 001 isolates in three hospitals in Eastern Slovakia, 2017. Folia Microbiol. 2019;64(1):49–54. doi:10.1007/s12223-018-0629-929971567
  • CouturierJ, EckertC, BarbutF. Spatio-temporal variability of the epidemic 027 Clostridium difficile strains in France based on MLVA typing. Anaerobe. 2017;48:179–183. doi:10.1016/j.anaerobe.2017.08.00728807623
  • SpigagliaP, MastrantonioP, BarbantiF. Antibiotic resistances of Clostridium difficile. Adv Exp Med Biol. 2018;1050:137–159. doi:10.1007/978-3-319-72799-8_929383668
  • IsidroJ, SantosA, NunesA, et al. Imipenem resistance in Clostridium difficile ribotype 017, Portugal. Emerg Infect Dis. 2018;24(4):741–745. doi:10.3201/eid2404.17009529553322