132
Views
4
CrossRef citations to date
0
Altmetric
Review

A Comprehensive Review of the Management of Pregnant Women with COVID-19: Useful Information for Obstetricians

& ORCID Icon
Pages 3363-3378 | Published online: 24 Aug 2021

References

  • LuR, ZhaoX, LiJ, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi:10.1016/S0140-6736(20)30251-832007145
  • XuX, ChenP, WangJ, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020;63(3):457–460. doi:10.1007/s11427-020-1637-532009228
  • SomersetDA, ZhengY, KilbyMD, SansomDM, DraysonMT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology. 2004;112(1):38–43. doi:10.1111/j.1365-2567.2004.01869.x15096182
  • ChanJF, YuanS, KokKH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523. doi:10.1016/S0140-6736(20)30154-931986261
  • WuZ, McGooganJM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239. doi:10.1001/jama.2020.264832091533
  • VegliaM, D’IppolitoS, MaranaR, et al. Human IgG Antinuclear Antibodies Induce Pregnancy Loss in Mice by Increasing Immune Complex Deposition in Placental Tissue: in Vivo Study. Am J Reprod Immunol. 2015;74(6):542–552. doi:10.1111/aji.1242926388133
  • O’DayMP. Cardio-respiratory physiological adaptation of pregnancy. Semin Perinatol. 1997;21(4):268–275. doi:10.1016/S0146-0005(97)80069-99298715
  • WeetmanAP. Immunity, thyroid function and pregnancy: molecular mechanisms. Nat Rev Endocrinol. 2010;6(6):311–318. doi:10.1038/nrendo.2010.4620421883
  • LongmanRE, JohnsonTR. Viral respiratory disease in pregnancy. Curr Opin Obstet Gynecol. 2007;19(2):120–125. doi:10.1097/GCO.0b013e328028fdc717353679
  • PazosM, SperlingRS, MoranTM, KrausTA. The influence of pregnancy on systemic immunity. Immunol Res. 2012;54(1–3):254–261. doi:10.1007/s12026-012-8303-922447351
  • PiconeO, BouthryE, Bejaoui-OlhmannY, et al. Determination of rubella virus-specific humoral and cell-mediated immunity in pregnant women with negative or equivocal rubella-specific IgG in routine screening. J Clin Virol. 2019;112:27–33. doi:10.1016/j.jcv.2019.01.00930711798
  • TsafarasGP, NtontsiP, XanthouG. Advantages and Limitations of the Neonatal Immune System. Front Pediatr. 2020;8:5. doi:10.3389/fped.2020.0000532047730
  • MuyayaloKP, HuangDH, ZhaoSJ, XieT, MorG, LiaoAH. COVID-19 and Treg/Th17 imbalance: potential relationship to pregnancy outcomes. Am J Reprod Immunol. 2020;84(5):e13304. doi:10.1111/aji.1330432662111
  • XuZ, ShiL, WangY, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi:10.1016/S2213-2600(20)30076-X32085846
  • FigueiredoAS, SchumacherA. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology. 2016;148(1):13–21. doi:10.1111/imm.1259526855005
  • JørgensenN, PerssonG, HviidTVF. The Tolerogenic Function of Regulatory T Cells in Pregnancy and Cancer. Front Immunol. 2019;10:911. doi:10.3389/fimmu.2019.0091131134056
  • LeeSK, KimJY, LeeM, Gilman-SachsA, Kwak-KimJ. Th17 and regulatory T cells in women with recurrent pregnancy loss. Am J Reprod Immunol. 2012;67(4):311–318. doi:10.1111/j.1600-0897.2012.01116.x22380579
  • JabalieG, AhmadiM, KoushaeianL, et al. Metabolic syndrome mediates proinflammatory responses of inflammatory cells in preeclampsia. Am J Reprod Immunol. 2019;81(3):e13086. doi:10.1111/aji.1308630614120
  • Kwak-KimJ, OtaK, SungN, et al. COVID-19 and immunomodulation treatment for women with reproductive failures. J Reprod Immunol. 2020;141:103168. doi:10.1016/j.jri.2020.10316832603991
  • WongSF, ChowKM, LeungTN, et al. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am J Obstet Gynecol. 2004;191(1):292–297. doi:10.1016/j.ajog.2003.11.01915295381
  • SchwartzDA, GrahamAL. Potential Maternal and Infant Outcomes from (Wuhan) Coronavirus 2019-nCoV Infecting Pregnant Women: lessons from SARS, MERS, and Other Human Coronavirus Infections. Viruses. 2020;12(2):25. doi:10.3390/v12020194
  • LamCM, WongSF, LeungTN, et al. A case-controlled study comparing clinical course and outcomes of pregnant and non-pregnant women with severe acute respiratory syndrome. Bjog. 2004;111(8):771–774. doi:10.1111/j.1471-0528.2004.00199.x15270922
  • MaxwellC, McGeerA, TaiKFY, SermerM. No. 225-Management Guidelines for Obstetric Patients and Neonates Born to Mothers With Suspected or Probable Severe Acute Respiratory Syndrome (SARS). J Obstet Gynaecol Can. 2017;39(8):e130–e137. doi:10.1016/j.jogc.2017.04.02428729104
  • ShekCC, NgPC, FungGP, et al. Infants born to mothers with severe acute respiratory syndrome. Pediatrics. 2003;112(4):e254. doi:10.1542/peds.112.4.e25414523207
  • NgPC, LeungCW, ChiuWK, WongSF, HonEK. SARS in newborns and children. Biol Neonate. 2004;85(4):293–298. doi:10.1159/00007817415218286
  • LiAM, NgPC. Severe acute respiratory syndrome (SARS) in neonates and children. Arch Dis Child Fetal Neonatal Ed. 2005;90(6):F461–5. doi:10.1136/adc.2005.07530916244207
  • ArabiYM, BalkhyHH, HaydenFG, et al. Middle East Respiratory Syndrome. N Engl J Med. 2017;376(6):584–594. doi:10.1056/NEJMsr140879528177862
  • AlfarajSH, Al-TawfiqJA, MemishZA. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection during pregnancy: report of two cases & review of the literature. J Microbiol Immunol Infect. 2019;52(3):501–503. doi:10.1016/j.jmii.2018.04.00529907538
  • PayneDC, IblanI, AlqasrawiS, et al. Stillbirth during infection with Middle East respiratory syndrome coronavirus. J Infect Dis. 2014;209(12):1870–1872. doi:10.1093/infdis/jiu06824474813
  • JeongSY, SungSI, SungJH, et al. MERS-CoV Infection in a Pregnant Woman in Korea. J Korean Med Sci. 2017;32(10):1717–1720. doi:10.3346/jkms.2017.32.10.171728875620
  • ChenH, GuoJ, WangC, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809–815. doi:10.1016/S0140-6736(20)30360-332151335
  • WenR, SunY, XingQS. A patient with SARS-CoV-2 infection during pregnancy in Qingdao, China. J Microbiol Immunol Infect. 2020;53(3):499–500. doi:10.1016/j.jmii.2020.03.00432198004
  • LiuH, LiuF, LiJ, ZhangT, WangD, LanW. Clinical and CT imaging features of the COVID-19 pneumonia: focus on pregnant women and children. J Infect. 2020;80(5):e7–e13. doi:10.1016/j.jinf.2020.03.00732171865
  • ElshafeeyF, MagdiR, HindiN, et al. A systematic scoping review of COVID-19 during pregnancy and childbirth. Int J Gynaecol Obstet. 2020;150(1):47–52. doi:10.1002/ijgo.1318232330287
  • MorG, CardenasI. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–433. doi:10.1111/j.1600-0897.2010.00836.x20367629
  • KayemG, LecarpentierE, DeruelleP, et al. A snapshot of the Covid-19 pandemic among pregnant women in France. J Gynecol Obstet Hum Reprod. 2020;49(7):101826. doi:10.1016/j.jogoh.2020.10182632505805
  • VousdenN, BunchK, MorrisE, et al. The incidence, characteristics and outcomes of pregnant women hospitalized with symptomatic and asymptomatic SARS-CoV-2 infection in the UK from March to September 2020: a national cohort study using the UK Obstetric Surveillance System (UKOSS). PLoS One. 2021;16(5):e0251123. doi:10.1371/journal.pone.025112333951100
  • MullinsE, HudakML, BanerjeeJ, et al. Pregnancy and neonatal outcomes of COVID-19: coreporting of common outcomes from PAN-COVID and AAP-SONPM registries. Ultrasound Obstet Gynecol. 2021;57(4):573–581. doi:10.1002/uog.2361933620113
  • AlloteyJ, StallingsE, BonetM, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ. 2020;370:m3320. doi:10.1136/bmj.m332032873575
  • Di ToroF, GjokaM, Di LorenzoG, et al. Impact of COVID-19 on maternal and neonatal outcomes: a systematic review and meta-analysis. Clin Microbiol Infect. 2021;27(1):36–46. doi:10.1016/j.cmi.2020.10.00733148440
  • HuntleyBJF, HuntleyES, Di MascioD, ChenT, BerghellaV, ChauhanSP. Rates of Maternal and Perinatal Mortality and Vertical Transmission in Pregnancies Complicated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Co-V-2) Infection: a Systematic Review. Obstet Gynecol. 2020;136(2):303–312. doi:10.1097/AOG.000000000000401032516273
  • JuanJ, GilMM, RongZ, ZhangY, YangH, PoonLC. Effect of coronavirus disease 2019 (COVID-19) on maternal, perinatal and neonatal outcome: systematic review. Ultrasound Obstet Gynecol. 2020;56(1):15–27. doi:10.1002/uog.2208832430957
  • KnightM, BunchK, VousdenN, et al. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study. BMJ. 2020;369:m2107. doi:10.1136/bmj.m210732513659
  • GuanWJ, LiangWH, ZhaoY, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):478. doi:10.1183/13993003.00547-2020
  • GuanWJ, NiZY, HuY, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:10.1056/NEJMoa200203232109013
  • RichardsonS, HirschJS, NarasimhanM, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052–2059. doi:10.1001/jama.2020.677532320003
  • MendozaM, Garcia-RuizI, MaizN, et al. Pre-eclampsia-like syndrome induced by severe COVID-19: a prospective observational study. Bjog. 2020;127(11):1374–1380. doi:10.1111/1471-0528.1633932479682
  • RolnikDL. Can COVID-19 in pregnancy cause pre-eclampsia?Bjog. 2020;127(11):1381. doi:10.1111/1471-0528.1636932570284
  • SmithgallMC, Liu-JarinX, Hamele-BenaD, et al. Third-trimester placentas of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive women: histomorphology, including viral immunohistochemistry and in-situ hybridization. Histopathology. 2020;77(6):994–999. doi:10.1111/his.1421532692408
  • BenhamouD, KeitaH, Ducloy-BouthorsAS. Coagulation changes and thromboembolic risk in COVID-19 obstetric patients. Anaesth Crit Care Pain Med. 2020;39(3):351–353. doi:10.1016/j.accpm.2020.05.00332437961
  • DennisCL, RossLE, HerxheimerA. Oestrogens and progestins for preventing and treating postpartum depression. Cochrane Database Syst Rev. 2008;2008(4):Cd001690.
  • KrausTA, EngelSM, SperlingRS, et al. Characterizing the pregnancy immune phenotype: results of the viral immunity and pregnancy (VIP) study. J Clin Immunol. 2012;32(2):300–311. doi:10.1007/s10875-011-9627-222198680
  • EllingtonS, StridP, TongVT, et al. Characteristics of Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status - United States, January 22-June 7, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(25):769–775. doi:10.15585/mmwr.mm6925a132584795
  • CollinJ, ByströmE, CarnahanA, AhrneM. Public Health Agency of Sweden’s Brief Report: pregnant and postpartum women with severe acute respiratory syndrome coronavirus 2 infection in intensive care in Sweden. Acta Obstet Gynecol Scand. 2020;99(7):819–822. doi:10.1111/aogs.1390132386441
  • DelahoyMJ, WhitakerM, O’HalloranA, et al. Characteristics and Maternal and Birth Outcomes of Hospitalized Pregnant Women with Laboratory-Confirmed COVID-19 - COVID-NET, 13 States, March 1-August 22, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(38):1347–1354. doi:10.15585/mmwr.mm6938e132970655
  • PanagiotakopoulosL, MyersTR, GeeJ, et al. SARS-CoV-2 Infection Among Hospitalized Pregnant Women: reasons for Admission and Pregnancy Characteristics - Eight U.S. Health Care Centers, March 1-May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(38):1355–1359. doi:10.15585/mmwr.mm6938e232970660
  • LebelC, MacKinnonA, BagshaweM, Tomfohr-MadsenL, GiesbrechtG. Elevated depression and anxiety symptoms among pregnant individuals during the COVID-19 pandemic. J Affect Disord. 2020;277:5–13. doi:10.1016/j.jad.2020.07.12632777604
  • WangC, PanR, WanX, et al. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. Int J Environ Res Public Health. 2020;17(5):658.
  • WangJ, ZhouY, QianW, ZhouY, HanR, LiuZ. Maternal insomnia during the COVID-19 pandemic: associations with depression and anxiety. Soc Psychiatry Psychiatr Epidemiol. 2021;56(8):1477–1485. doi:10.1007/s00127-021-02072-233891160
  • GloverV, BergmanK, SarkarP, O’ConnorTG. Association between maternal and amniotic fluid cortisol is moderated by maternal anxiety. Psychoneuroendocrinology. 2009;34(3):430–435. doi:10.1016/j.psyneuen.2008.10.00519019559
  • BayrampourH, TomfohrL, ToughS. Trajectories of Perinatal Depressive and Anxiety Symptoms in a Community Cohort. J Clin Psychiatry. 2016;77(11):e1467–e1473. doi:10.4088/JCP.15m1017628076674
  • QuF, WuY, ZhuYH, et al. The association between psychological stress and miscarriage: a systematic review and meta-analysis. Sci Rep. 2017;7(1):1731. doi:10.1038/s41598-017-01792-328496110
  • SteinA, PearsonRM, GoodmanSH, et al. Effects of perinatal mental disorders on the fetus and child. Lancet. 2014;384(9956):1800–1819. doi:10.1016/S0140-6736(14)61277-025455250
  • AdamsonB, LetourneauN, LebelC. Prenatal maternal anxiety and children’s brain structure and function: a systematic review of neuroimaging studies. J Affect Disord. 2018;241:117–126. doi:10.1016/j.jad.2018.08.02930118945
  • MacKinnonN, KingsburyM, MahedyL, EvansJ, ColmanI. The Association Between Prenatal Stress and Externalizing Symptoms in Childhood: evidence From the Avon Longitudinal Study of Parents and Children. Biol Psychiatry. 2018;83(2):100–108. doi:10.1016/j.biopsych.2017.07.01028893381
  • ChenL, LiQ, ZhengD, et al. Clinical Characteristics of Pregnant Women with Covid-19 in Wuhan, China. N Engl J Med. 2020;382(25):e100. doi:10.1056/NEJMc200922632302077
  • XuL, YangQ, ShiH, et al. Clinical presentations and outcomes of SARS-CoV-2 infected pneumonia in pregnant women and health status of their neonates. Sci Bull. 2020;65(18):1537–1542. doi:10.1016/j.scib.2020.04.040
  • BirkelandSA, KristoffersenK. T and B lymphocytes during normal human pregnancy: a longitudinal study. Scand J Immunol. 1979;10(5):415–419. doi:10.1111/j.1365-3083.1979.tb01370.x317536
  • KhouryP, StokesK, GadkariM, et al. Glucocorticoid-induced eosinopenia in humans can be linked to early transcriptional events. Allergy. 2018;73(10):2076–2079. doi:10.1111/all.1349729885264
  • AiT, YangZ, HouH, et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: a Report of 1014 Cases. Radiology. 2020;2:200642.
  • Dotters-KatzSK, HughesBL. Considerations for Obstetric Care during the COVID-19 Pandemic. Am J Perinatol. 2020;2:58.
  • HuangC, WangY, LiX, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-531986264
  • ZhangL, JiangY, WeiM, et al. [Analysis of the pregnancy outcomes in pregnant women with COVID-19 in Hubei Province]. Zhonghua Fu Chan Ke Za Zhi. 2020;55(3):166–171. Chinese.32145714
  • Di MascioD, KhalilA, SacconeG, et al. Outcome of Coronavirus spectrum infections (SARS, MERS, COVID 1-19) during pregnancy: a systematic review and meta-analysis. Am J Obstet Gynecol MFM. 2020;2(2):100107. doi:10.1016/j.ajogmf.2020.10010732292902
  • PoonLC, YangH, LeeJCS, et al. ISUOG Interim Guidance on 2019 novel coronavirus infection during pregnancy and puerperium: information for healthcare professionals. Ultrasound Obstet Gynecol. 2020;55(5):700–708. doi:10.1002/uog.2201332160345
  • KovacM, MikovicZ, RakicevicL, et al. The use of D-dimer with new cutoff can be useful in diagnosis of venous thromboembolism in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2010;148(1):27–30. doi:10.1016/j.ejogrb.2009.09.00519804940
  • DubeyP, ReddySY, ManuelS, DwivediAK. Maternal and neonatal characteristics and outcomes among COVID-19 infected women: an updated systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;252:490–501. doi:10.1016/j.ejogrb.2020.07.03432795828
  • KotlyarAM, GrechukhinaO, ChenA, et al. Vertical transmission of coronavirus disease 2019: a systematic review and meta-analysis. Am J Obstet Gynecol. 2021;224(1):35–53.e3. doi:10.1016/j.ajog.2020.07.04932739398
  • YukiK, FujiogiM, KoutsogiannakiS. COVID-19 pathophysiology: a review. Clin Immunol. 2020;215:108427. doi:10.1016/j.clim.2020.10842732325252
  • YanJ, GuoJ, FanC, et al. Coronavirus disease 2019 in pregnant women: a report based on 116 cases. Am J Obstet Gynecol. 2020;223(1):111.e1–111.e14. doi:10.1016/j.ajog.2020.04.014
  • YoonSH, KangJM, AhnJG. Clinical outcomes of 201 neonates born to mothers with COVID-19: a systematic review. Eur Rev Med Pharmacol Sci. 2020;24(14):7804–7815.32744708
  • AassveA, CavalliN, MencariniL, PlachS, Livi BacciM. The COVID-19 pandemic and human fertility. Science. 2020;369(6502):370–371.32703862
  • DashraathP, WongJLJ, LimMXK, et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020;222(6):521–531. doi:10.1016/j.ajog.2020.03.02132217113
  • MooreSA, DietlCA, ColemanDM. Extracorporeal life support during pregnancy. J Thorac Cardiovasc Surg. 2016;151(4):1154–1160. doi:10.1016/j.jtcvs.2015.12.02726825433
  • Zheng-Y-Y, MaY-T, ZhangJ-Y, XieX. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259–260. doi:10.1038/s41569-020-0360-532139904
  • ZhouF, YuT, DuR, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.32171076
  • FavreG, PomarL, QiX, Nielsen-SainesK, MussoD, BaudD. Guidelines for pregnant women with suspected SARS-CoV-2 infection. Lancet Infect Dis. 2020;20(6):652–653. doi:10.1016/S1473-3099(20)30157-232142639
  • AlserehiH, WaliG, AlshukairiA, AlraddadiB. Impact of Middle East Respiratory Syndrome coronavirus (MERS-CoV) on pregnancy and perinatal outcome. BMC Infect Dis. 2016;16:105. doi:10.1186/s12879-016-1437-y26936356
  • WangM, CaoR, ZhangL, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271. doi:10.1038/s41422-020-0282-032020029
  • VogelJP, TendalB, GilesM, et al. Clinical care of pregnant and postpartum women with COVID-19: living recommendations from the National COVID-19 Clinical Evidence Taskforce. Aust N Z J Obstet Gynaecol. 2020;60(6):840–851. doi:10.1111/ajo.1327033119139
  • KarunajeewaHA, SalmanS, MuellerI, et al. Pharmacokinetics of chloroquine and monodesethylchloroquine in pregnancy. Antimicrob Agents Chemother. 2010;54(3):1186–1192. doi:10.1128/AAC.01269-0920086162
  • GaoJ, TianZ, YangX. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72–73. doi:10.5582/bst.2020.0104732074550
  • RasmussenSA, KelleyCF, HortonJP, JamiesonDJ. Coronavirus Disease 2019 (COVID-19) Vaccines and Pregnancy: what Obstetricians Need to Know. Obstet Gynecol. 2021;137(3):408–414. doi:10.1097/AOG.000000000000429033370015
  • PolackFP, ThomasSJ, KitchinN, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603–2615. doi:10.1056/NEJMoa203457733301246
  • JacksonLA, AndersonEJ, RouphaelNG, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med. 2020;383(20):1920–1931. doi:10.1056/NEJMoa202248332663912
  • McNeilMM, GeeJ, WeintraubES, et al. The Vaccine Safety Datalink: successes and challenges monitoring vaccine safety. Vaccine. 2014;32(42):5390–5398. doi:10.1016/j.vaccine.2014.07.07325108215
  • WiwanitkitV. Safety of influenza A (H1N1) 2009 live attenuated monovalent vaccine in pregnant women. Obstet Gynecol. 2014;123(3):665–666. doi:10.1097/AOG.0000000000000153
  • CraigAM, HughesBL, SwamyGK. Coronavirus disease 2019 vaccines in pregnancy. Am J Obstet Gynecol MFM. 2021;3(2):100295. doi:10.1016/j.ajogmf.2020.10029533516986
  • GrayKJ, BordtEA, AtyeoC, et al. COVID-19 vaccine response in pregnant and lactating women: a cohort study. medRxiv. 2021;1.
  • DubeyP, ThakurB, ReddyS, et al. Current trends and geographical differences in therapeutic profile and outcomes of COVID-19 among pregnant women - a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2021;21(1):247. doi:10.1186/s12884-021-03685-w33761892
  • BeovićB, DoušakM, Ferreira-CoimbraJ, et al. Antibiotic use in patients with COVID-19: a ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J Antimicrob Chemother. 2020;75(11):3386–3390. doi:10.1093/jac/dkaa32632766706
  • GetahunH, SmithI, TrivediK, PaulinS, BalkhyHH. Tackling antimicrobial resistance in the COVID-19 pandemic. Bull World Health Organ. 2020;98(7):442–442a. doi:10.2471/BLT.20.26857332742026
  • VaughnVM, GandhiTN, PettyLA, et al. Empiric Antibacterial Therapy and Community-onset Bacterial Coinfection in Patients Hospitalized With Coronavirus Disease 2019 (COVID-19): a Multi-hospital Cohort Study. Clin Infect Dis. 2021;72(10):e533–e541. doi:10.1093/cid/ciaa123932820807
  • BeigelJH, TomashekKM, DoddLE, et al. Remdesivir for the Treatment of Covid-19 - Final Report. N Engl J Med. 2020;383(19):1813–1826. doi:10.1056/NEJMoa200776432445440
  • Nielsen JeschkeK, BonnesenB, HansenEF, et al. Guideline for the management of COVID-19 patients during hospital admission in a non-intensive care setting. Eur Clin Respir J. 2020;7(1):1761677. doi:10.1080/20018525.2020.176167733224450
  • ThngZX, De SmetMD, LeeCS, et al. COVID-19 and immunosuppression: a review of current clinical experiences and implications for ophthalmology patients taking immunosuppressive drugs. Br J Ophthalmol. 2021;105(3):306–310. doi:10.1136/bjophthalmol-2020-31658632532764
  • De LeoV, MusacchioMC, CappelliV, MassaroMG, MorganteG, PetragliaF. Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endocrinol. 2016;14(1):38. doi:10.1186/s12958-016-0173-x27423183
  • HoffmannM, Kleine-WeberH, SchroederS, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–280.e8. doi:10.1016/j.cell.2020.02.05232142651
  • SharifiN, RyanCJ. Androgen hazards with COVID-19. Endocr Relat Cancer. 2020;27(6):E1–e3. doi:10.1530/ERC-20-013332302975
  • SubramanianA, AnandA, AdderleyNJ, et al. Increased COVID-19 infections in women with polycystic ovary syndrome: a population-based study. Eur J Endocrinol. 2021;184(5):637–645. doi:10.1530/EJE-20-116333635829
  • CadegianiFA, LimRK, GorenA, et al. Clinical symptoms of hyperandrogenic women diagnosed with COVID-19. J Eur Acad Dermatol Venereol. 2021;35(2):e101–e104. doi:10.1111/jdv.1700433089570
  • OrtolanA, LorenzinM, FelicettiM, DoriaA, RamondaR. Does gender influence clinical expression and disease outcomes in COVID-19? A systematic review and meta-analysis. Int J Infect Dis. 2020;99:496–504. doi:10.1016/j.ijid.2020.07.07632800858
  • MorganteG, TroìaL, De LeoV. Coronavirus Disease 2019 (SARS-CoV-2) and polycystic ovarian disease: is there a higher risk for these women?J Steroid Biochem Mol Biol. 2021;205:105770. doi:10.1016/j.jsbmb.2020.10577033065278
  • HuffmanAM, RezqS, BasnetJ, Yanes CardozoLL, RomeroDG. SARS-CoV-2 Viral Entry Proteins in Hyperandrogenemic Female Mice: implications for Women with PCOS and COVID-19. Int J Mol Sci. 2021;22(9):487. doi:10.3390/ijms22094472
  • SharmaS, RayA, SadasivamB. Metformin in COVID-19: a possible role beyond diabetes. Diabetes Res Clin Pract. 2020;164:108183. doi:10.1016/j.diabres.2020.10818332360697
  • BornsteinSR, RubinoF, KhuntiK, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(6):546–550. doi:10.1016/S2213-8587(20)30152-232334646
  • TakemotoM, MenezesMO, AndreucciCB, et al. Clinical characteristics and risk factors for mortality in obstetric patients with severe COVID-19 in Brazil: a surveillance database analysis. Bjog. 2020;127(13):1618–1626. doi:10.1111/1471-0528.1647032799381
  • TeixeiraMLB. Maternal and Neonatal Outcomes of SARS-CoV-2 Infection in a Cohort of Pregnant Women with Comorbid Disorders. Viruses. 2021;13(7):69. doi:10.3390/v1307127733419096
  • National Institutes of Health (US). Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health (US); 2021.
  • LamourouxA, Attie-BitachT, MartinovicJ, Leruez-VilleM, VilleY. Evidence for and against vertical transmission for SARS-CoV-2 (COVID-19). Am J Obstet Gynecol. 2020;223(1):91.e1–4. doi:10.1016/j.ajog.2020.04.039
  • YuN, LiW, KangQ, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect Dis. 2020;20(5):559–564. doi:10.1016/S1473-3099(20)30176-632220284
  • KirtsmanM, DiambombaY, PoutanenSM, et al. Probable congenital SARS-CoV-2 infection in a neonate born to a woman with active SARS-CoV-2 infection. Cmaj. 2020;192(24):E647–e650. doi:10.1503/cmaj.20082132409520
  • AlzamoraMC, ParedesT, CaceresD, WebbCM, ValdezLM, La RosaM. Severe COVID-19 during Pregnancy and Possible Vertical Transmission. Am J Perinatol. 2020;37(8):861–865. doi:10.1055/s-0040-171005032305046
  • ZamaniyanM, EbadiA, AghajanpoorS, RahmaniZ, HaghshenasM, AziziS. Preterm delivery, maternal death, and vertical transmission in a pregnant woman with COVID-19 infection. Prenat Diagn. 2020;40(13):1759–1761. doi:10.1002/pd.571332304114
  • FeniziaC, BiasinM, CetinI, et al. Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nat Commun. 2020;11(1):5128. doi:10.1038/s41467-020-18933-433046695
  • DongL, TianJ, HeS, et al. Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn. JAMA. 2020;323(18):1846–1848.32215581
  • ZengH, XuC, FanJ, et al. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA. 2020;323(18):1848–1849.32215589
  • KimberlinDW, StagnoS. Can SARS-CoV-2 Infection Be Acquired In Utero?: more Definitive Evidence Is Needed. JAMA. 2020. doi:10.1001/jama.2020.4868
  • HosierH, FarhadianSF, MorottiRA, et al. SARS-CoV-2 infection of the placenta. J Clin Invest. 2020;130(9):4947–4953. doi:10.1172/JCI13956932573498
  • BaudD, GreubG, FavreG, et al. Second-Trimester Miscarriage in a Pregnant Woman With SARS-CoV-2 Infection. JAMA. 2020;323(21):2198–2200. doi:10.1001/jama.2020.723332352491
  • PenfieldCA, BrubakerSG, LimayeMA, et al. Detection of severe acute respiratory syndrome coronavirus 2 in placental and fetal membrane samples. Am J Obstet Gynecol MFM. 2020;2(3):100133. doi:10.1016/j.ajogmf.2020.10013332391518
  • HechtJL, QuadeB, DeshpandeV, et al. SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: a series of 19 placentas from COVID-19-positive mothers. Mod Pathol. 2020;33(11):2092–2103. doi:10.1038/s41379-020-0639-432741970
  • MenterT, MertzKD, JiangS, et al. Placental Pathology Findings during and after SARS-CoV-2 Infection: features of Villitis and Malperfusion. Pathobiology. 2021;88(1):69–77. doi:10.1159/00051132432950981
  • TaglauerE, BenarrochY, RopK, et al. Consistent localization of SARS-CoV-2 spike glycoprotein and ACE2 over TMPRSS2 predominance in placental villi of 15 COVID-19 positive maternal-fetal dyads. Placenta. 2020;100:69–74. doi:10.1016/j.placenta.2020.08.01532862058
  • AlgarrobaGN, RekawekP, VahanianSA, et al. Visualization of severe acute respiratory syndrome coronavirus 2 invading the human placenta using electron microscopy. Am J Obstet Gynecol. 2020;223(2):275–278. doi:10.1016/j.ajog.2020.05.02332405074
  • LandesM, van LettowM, NkhomaE, et al. Low detectable postpartum viral load is associated with HIV transmission in Malawi’s prevention of mother-to-child transmission programme. J Int AIDS Soc. 2019;22(6):e25290. doi:10.1002/jia2.2529031180186
  • SaminathanM, SinghKP, VineethaS, et al. Virological, immunological and pathological findings of transplacentally transmitted bluetongue virus serotype 1 in IFNAR1-blocked mice during early and mid gestation. Sci Rep. 2020;10(1):2164. doi:10.1038/s41598-020-58268-032034180
  • VivantiAJ, Vauloup-FellousC, PrevotS, et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 2020;11(1):3572. doi:10.1038/s41467-020-17436-632665677
  • GroßR, ConzelmannC, MüllerJA, et al. Detection of SARS-CoV-2 in human breastmilk. Lancet. 2020;395(10239):1757–1758. doi:10.1016/S0140-6736(20)31181-832446324
  • WangK, ChenW, ZhangZ, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;5(1):283. doi:10.1038/s41392-020-00426-x33277466
  • DalyJL, SimonettiB, KleinK, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861–865. doi:10.1126/science.abd307233082294
  • SmieszekSP, PrzychodzenBP, PolymeropoulosMH. Amantadine disrupts lysosomal gene expression: a hypothesis for COVID19 treatment. Int J Antimicrob Agents. 2020;55(6):106004. doi:10.1016/j.ijantimicag.2020.10600432361028