430
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Molecular Mechanisms and Epidemiology of Carbapenem-Resistant Enterobacter cloacae Complex Isolated from Chinese Patients During 2004–2018

, , , , , , , & show all
Pages 3647-3658 | Published online: 07 Sep 2021

References

  • SandersWEJr., SandersCC. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin Microbiol Rev. 1997;10:220–241. doi:10.1128/CMR.10.2.220-241.19979105752
  • Davin-RegliA, PagesJM. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol. 2015;6:392. doi:10.3389/fmicb.2015.0039226042091
  • AnnavajhalaMK, Gomez-SimmondsA, UhlemannAC. Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front Microbiol. 2019;10:44. doi:10.3389/fmicb.2019.0004430766518
  • HuangS, DaiW, SunS, et al. Prevalence of plasmid-mediated quinolone resistance and aminoglycoside resistance determinants among carbapenem non-susceptible Enterobacter cloacae. PLoS One. 2012;7(10):e47636. doi:10.1371/journal.pone.004763623110085
  • CorkillJE, AnsonJJ, HartCA. High prevalence of the plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK. J Antimicrob Chemother. 2005;56(6):1115–1117. doi:10.1093/jac/dki38816260446
  • JinC, ZhangJ, WangQ, et al. Molecular characterization of carbapenem-resistant Enterobacter cloacae in 11 Chinese cities. Front Microbiol. 2018;9:1597. doi:10.3389/fmicb.2018.0159730065717
  • RaimondiA, TraversoA, NikaidoH. Imipenem- and meropenem-resistant mutants of Enterobacter cloacae and proteus rettgeri lack porins. Antimicrob Agents Chemother. 1991;35(6):1174–1180. doi:10.1128/aac.35.6.11741656855
  • GalaniI, SouliM, ChryssouliZ, et al. Characterization of a new integron containing bla(VIM-1) and aac(6ʹ)-IIc in an Enterobacter cloacae clinical isolate from Greece. J Antimicrob Chemother. 2005;55(5):634–638. doi:10.1093/jac/dki07315761066
  • YangFC, YanJJ, HungKH, et al. Characterization of ertapenem-resistant Enterobacter cloacae in a Taiwanese university hospital. J Clin Microbiol. 2012;50(2):223–226. doi:10.1128/JCM.01263-1122135256
  • BoydDA, MatasejeLF, DavidsonR, et al. Enterobacter cloacae complex isolates harboring bla NMC-A or bla IMI-type class a carbapenemase genes on novel chromosomal integrative elements and plasmids. Antimicrob Agents Chemother. 2017;61(5). doi:10.1128/AAC.02578-16
  • Van MaerkenT, De BrabandereE, NoelA, et al. A recurrent and transesophageal echocardiography-associated outbreak of extended-spectrum beta-lactamase-producing Enterobacter cloacae complex in cardiac surgery patients. Antimicrob Resist Infect Control. 2019;8(1):152. doi:10.1186/s13756-019-0605-431548884
  • ArpinC, LabiaR, DuboisV, et al. TEM-80, a novel inhibitor-resistant β-lactamase in a clinical isolate of Enterobacter cloacae. Antimicrob Agents Chemother. 2002;46(5):1183–1189. doi:10.1128/aac.46.5.1183-1189.200211959543
  • BornetC, Davin-RegliA, BosiC, et al. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability. J Clin Microbiol. 2000;38(3):1048–1052. doi:10.1128/JCM.38.3.1048-1052.200010698994
  • PitoutJD, MolandES, SandersCC, et al. Beta-lactamases and detection of beta-lactam resistance in Enterobacter spp. Antimicrob Agents Chemother. 1997;41(1):35–39. doi:10.1128/AAC.41.1.358980751
  • SzaboD, MelanMA, HujerAM, et al. Molecular analysis of the simultaneous production of two SHV-type extended-spectrum beta-lactamases in a clinical isolate of Enterobacter cloacae by using single-nucleotide polymorphism genotyping. Antimicrob Agents Chemother. 2005;49(11):4716–4720. doi:10.1128/AAC.49.11.4716-4720.200516251316
  • ChavdaKD, ChenL, FoutsDE, et al. Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: new insights into phylogeny, population structure, and resistance mechanisms. mBio. 2016;7(6):e02093–e02116. doi:10.1128/mBio.02093-1627965456
  • FernandesCJ, O’SullivanMV, CaiY, et al. Agar dilution method for detection of inducible clindamycin resistance in Staphylococcus spp. J Clin Microbiol. 2007;45(12):4018–4020. doi:10.1128/JCM.01158-0717942656
  • SilagoV, KovacsD, SamsonH, et al. Existence of multiple ESBL genes among phenotypically confirmed ESBL producing Klebsiella pneumoniae and Escherichia coli concurrently isolated from clinical, colonization and contamination samples from neonatal units at Bugando Medical Center, Mwanza, Tanzania. Antibiotics. 2021;10:476. doi:10.3390/antibiotics1005047633919117
  • NicolauDP, CarmeliY, CrankCW, et al. Carbapenem stewardship: does ertapenem affect Pseudomonas susceptibility to other carbapenems? A review of the evidence. Int J Antimicrob Agents. 2012;39(1):11–15. doi:10.1016/j.ijantimicag.2011.08.01822047702
  • GuptaV, YeG, OleskyM, et al. National prevalence estimates for resistant Enterobacteriaceae and Acinetobacter species in hospitalized patients in the United States. Int J Infect Dis. 2019;85:203–211. doi:10.1016/j.ijid.2019.06.01731229615
  • WilsonBM, El ChakhtouraNG, PatelS, et al. Carbapenem-resistant Enterobacter cloacae in Patients from the US veterans health administration, 2006–2015. Emerg Infect Dis. 2017;23(5):878–880. doi:10.3201/eid2305.16203428418318
  • PotM, ReynaudY, CouvinD, et al. Wide distribution and specific resistance pattern to third-generation cephalosporins of Enterobacter cloacae complex members in humans and in the environment in Guadeloupe (French West Indies). Front Microbiol. 2021;12:628058. doi:10.3389/fmicb.2021.62805834248862
  • MushtaqS, ReynoldsR, GilmoreMC, et al. Inherent colistin resistance in genogroups of the Enterobacter cloacae complex: epidemiological, genetic and biochemical analysis from the BSAC Resistance Surveillance Programme. J Antimicrob Chemother. 2020;75(9):2452–2461. doi:10.1093/jac/dkaa20132514538
  • YongD, TolemanMA, GiskeCG, et al. Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–5054. doi:10.1128/AAC.00774-0919770275
  • WangQ, WangX, WangJ, et al. Phenotypic and genotypic characterization of carbapenem-resistant Enterobacteriaceae: data from a longitudinal large-scale CRE study in China (2012–2016). Clin Infect Dis. 2018;67(suppl_2):S196–S205. doi:10.1093/cid/ciy66030423057
  • PaskovaV, MedveckyM, SkalovaA, et al. Characterization of NDM-encoding plasmids from Enterobacteriaceae recovered from Czech hospitals. Front Microbiol. 2018;9:1549. doi:10.3389/fmicb.2018.0154930042758
  • ParkSO, LiuJ, FuruyaEY, et al. Carbapenem-resistant Klebsiella pneumoniae infection in Three New York city hospitals trended downwards from 2006 to 2014. Open Forum Infect Dis. 2016;3(4):ofw222. doi:10.1093/ofid/ofw22227942542
  • BratuS, MootyM, NichaniS, et al. Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrob Agents Chemother. 2005;49(7):3018–3020. doi:10.1128/AAC.49.7.3018-3020.200515980389
  • ZhaoY, ZhangJ, FuY, et al. Molecular characterization of metallo-beta-lactamase- producing carbapenem-resistant Enterobacter cloacae complex isolated in Heilongjiang Province of China. BMC Infect Dis. 2020;20(1):94. doi:10.1186/s12879-020-4768-732005138
  • HuangJ, DingH, ShiY, et al. Further spread of a blaKPC-harboring untypeable plasmid in Enterobacteriaceae in China. Front Microbiol. 2018;9:1938. doi:10.3389/fmicb.2018.0193830186260
  • DaiW, SunS, YangP, et al. Characterization of carbapenemases, extended spectrum beta-lactamases and molecular epidemiology of carbapenem-non-susceptible Enterobacter cloacae in a Chinese hospital in Chongqing. Infect Genet Evol. 2013;14:1–7. doi:10.1016/j.meegid.2012.10.01023220359
  • AlbigerB, GlasnerC, StruelensMJ, et al. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill. 2015;20(45):30062. doi:10.2807/1560-7917.ES.2015.20.45.30062
  • BitarI, PapagiannitsisCC, KraftovaL, et al. Detection of five mcr-9 –carrying Enterobacterales isolates in four Czech hospitals. mSphere. 2020;5(6):e01008–e01020. doi:10.1128/mSphere.01008-2033298573
  • De ChampsC, SauvantMP, ChanalC, et al. Prospective survey of colonization and infection caused by expanded-spectrum-beta-lactamase-producing members of the family Enterobacteriaceae in an intensive care unit. J Clin Microbiol. 1989;27(12):2887–2890. doi:10.1128/JCM.27.12.2887-2890.19892592552
  • CaiY, ChenC, ZhaoM, et al. High prevalence of metallo-beta-lactamase-producing Enterobacter cloacae from three tertiary hospitals in China. Front Microbiol. 2019;10:1610. doi:10.3389/fmicb.2019.0161031447788
  • Kluytmans-van den BerghMF, RossenJW, Bruijning-VerhagenPC, et al. Whole-genome multilocus sequence typing of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol. 2016;54(12):2919–2927. doi:10.1128/JCM.01648-1627629900
  • JeanSS, HsuehPR, GroupSA-P. Distribution of ESBLs, AmpC beta-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008–14: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). J Antimicrob Chemother. 2017;72:166–171. doi:10.1093/jac/dkw39827703058
  • PeiranoG, MatsumuraY, AdamsMD, et al. Genomic epidemiology of global carbapenemase-producing Enterobacter spp., 2008–2014. Emerg Infect Dis. 2018;24(6):1010–1019. doi:10.3201/eid2406.17164829774858
  • CyoiaPS, KogaVL, NishioEK, et al. Distribution of ExPEC Virulence Factors, bla CTX-M, fosA3, and mcr-1 in Escherichia coli isolated from commercialized chicken carcasses. Front Microbiol. 2018;9:3254. doi:10.3389/fmicb.2018.0325430692971
  • MarkovskaR, StoevaT, DimitrovaD, et al. Quinolone resistance mechanisms among third-generation cephalosporin resistant isolates of Enterobacter spp. in a Bulgarian university hospital. Infect Drug Resist. 2019;12:1445–1455. doi:10.2147/IDR.S20419931213860
  • HoffmannH, SturenburgE, HeesemannJ, et al. Prevalence of extended-spectrum beta-lactamases in isolates of the Enterobacter cloacae complex from German hospitals. Clin Microbiol Infect. 2006;12(4):322–330. doi:10.1111/j.1469-0691.2006.01360.x16524408
  • SzaboD, SilveiraF, HujerAM, et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother. 2006;50(8):2833–2835. doi:10.1128/AAC.01591-0516870780
  • IzdebskiR, BaraniakA, HerdaM, et al. MLST reveals potentially high-risk international clones of Enterobacter cloacae. J Antimicrob Chemother. 2015;70(1):48–56. doi:10.1093/jac/dku35925216820