268
Views
13
CrossRef citations to date
0
Altmetric
Original Research

Impact of High Serum Levels of MMP-7, MMP-9, TGF-β and PDGF Macrophage Activation Markers on Severity of COVID-19 in Obese-Diabetic Patients

, , ORCID Icon & ORCID Icon
Pages 4015-4025 | Published online: 28 Sep 2021

References

  • LuR, ZhaoX, LiJ, NiuP, YangB, WuH. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565e574. doi:10.1016/S0140-6736(20)30251-832007145
  • GuoYR, Qing-DongC, HongZS, et al. The origin, transmission and clinical therapies on Coronavirus disease 2019 (COVID-19) outbreak: an update on the status. Mil Med Res. 2020;7:11.32169119
  • SoaresSC, TenórioEA, de OliveiraLH, et al. COVID-19 and obesity: the meeting of two pandemics. Arch Endocrinol Metab. 2021;65(1):1–13.33625811
  • McGonagleD, SharifK, O’ReganA, BridgewoodC. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19(6):102537. doi:10.1016/j.autrev.2020.10253732251717
  • LiB, YangJ, ZhaoF, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardio. 2020;109(5):531–538. doi:10.1007/s00392-020-01626-9
  • ZhouP, YangXL, WangXG, HuB, ZhangL, ZhangW. A pneumonia outbreak associated with a new Coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi:10.1038/s41586-020-2012-732015507
  • ChenG, WuD, GuoW, et al. Clinical and immunological features of severe and moderate Coronavirus disease 2019. J Clin Invest. 2020;13:453–461.
  • HuangI, LimMA, PranataR. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia-A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020;14(4):395–403. doi:10.1016/j.dsx.2020.04.01832334395
  • MartinezFO, SicaA, MantovaniA, LocatiM. Macrophage activation and polarization. Front Biosci. 2008;13(13):453–461. doi:10.2741/269217981560
  • FerraciniM, MartinsJO, CamposMR, AngerDB, JancarS. Impaired phagocytosis by alveolar macrophages from diabetic rats is related to the deficient coupling of LTs to the Fc gamma R signaling cascade. Mol Immunol. 2010;47(11–12):1974–1980. doi:10.1016/j.molimm.2010.04.01820510456
  • PrasseA, PechkovskyDV, ToewsGB, et al. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med. 2006;173(7):781–792. doi:10.1164/rccm.200509-1518OC16415274
  • MoinASM, SathyapalanT, AtkinSL, ButlerAE. Pro-fibrotic M2 macrophage markers may increase the risk for COVID-19 in type 2 diabetes with obesity. Metabolism. 2020;112:154374. doi:10.1016/j.metabol.2020.15437432949593
  • MantovaniA, SicaA, SozzaniS, AllavenaP, VecchiA, LocatiM. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–686. doi:10.1016/j.it.2004.09.01515530839
  • CascellaM, RajnikM, AleemA, DulebohnS, NapoliR. Features, evaluation, and treatment of coronavirus (COVID-19). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021.
  • GoudourisES. Laboratory diagnosis of COVID-19. J Pediatr (Rio J). 2021;97(1):7–12. doi:10.1016/j.jped.2020.08.00132882235
  • ProkopM, Van Rees VellingaT, Van UffordH, et al. CO-RADS: a categorical CT assessment scheme for patients suspected of having COVID-19 – definition and evaluation. Radiology. 2020;296(2):97–104. doi:10.1148/radiol.2020201473
  • LiX, MaX. Acute respiratory failure in COVID-19: is it “typical” ARDS?Crit Care. 2020;24(1):198. doi:10.1186/s13054-020-02911-932375845
  • RichardsonS, HirschJS, NarasimhanM, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA. 2020;323(20):2052–2059. doi:10.1001/jama.2020.677532320003
  • GongMN, BajwaEK, ThompsonBT, ChristianiDC. Body mass index is associated with the development of acute respiratory distress syndrome. Thorax. 2010;65(1):44–50. doi:10.1136/thx.2009.11757219770169
  • MisharinAV, Scott BudingerGR, PerlmanH. The lung macrophage: a Jack of all trades. Am J Respir Crit Care Med. 2011;184(5):497–498. doi:10.1164/rccm.201107-1343ED21885631
  • Fernandez-PatronC, KassiriZ, LeungD. Modulation of systemic metabolism by MMP-2: from MMP-2 deficiency in mice to MMP-2 deficiency in patients. Compr Physiol. 2016;6:1935–1949.27783864
  • ElkingtonPT, FriedlandJS. Matrix metalloproteinases in destructive pulmonary pathology. Thorax. 2006;61(3):259–266. doi:10.1136/thx.2005.05197916227332
  • OikonomidiS, KostikasK, TsilioniI, TanouK, GourgoulianisKI, KiropoulosTS. Matrix metalloproteinases in respiratory diseases: from pathogenesis to potential clinical implications. Curr. Med. Chem. 2009;16(10):1214–1228. doi:10.2174/09298670978784658719355880
  • HardyE, Fernandez-PatroC. Targeting MMP-regulation of inflammation to increase metabolic tolerance to COVID-19 pathologies: a hypothesis. Biomolecules. 2021;11(3):390. doi:10.3390/biom1103039033800947
  • HsuAT, BarrettCD, DeBuskMG, et al. Kinetics and role of plasma matrix metalloproteinase-9 expression in acute lung injury and the acute respiratory distress syndrome. Shock. 2015;44(2):128–136. doi:10.1097/SHK.000000000000038626009816
  • UelandT, HolterJC, HoltenAR, et al. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure. J Infect. 2020;81(3):41–43. doi:10.1016/j.jinf.2020.06.061
  • SieblerJ, GallePR, WeberMM. The gut liver axis: endotoxemia, inflammation, insulin resistance and NASH. J Hepatol. 2008;48(6):1032–1034. doi:10.1016/j.jhep.2008.03.00718468548
  • WeissJ. Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide - binding protein (LBP): structure, function and regulation in host defense against Gram-negative bacteria. Biochem Soc Trans. 2003;31(4):785–790. doi:10.1042/bst31078512887306
  • RuizAG, CasafontF, CrespoJ, et al. Lipopolysaccharide-binding protein plasma levels and liver TNF- α gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg. 2007;17(10):1374–1380. doi:10.1007/s11695-007-9243-718000721
  • YangX, YuY, XuJ, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a Single-Centered, Retrospective, Observational Study. Lancet Respir. 2020;8(5):475–481. doi:10.1016/S2213-2600(20)30079-5
  • WelkerC, HuangJ, RamakrishnaH. Acute respiratory distress syndrome update, with Coronavirus disease 2019 focus. J Cardiothoracic Vasc Anesth. 2021;1–8. doi:10.1053/j.jvca.2021.02.053
  • XuW, SunNN, GaoHN, et al. Risk factors analysis of COVID 19 patients with ARDS and prediction based on machine learning. Sci Rep. 2021;11(1):2933. doi:10.1038/s41598-021-82492-x33536460
  • VargaJ, LafyatisR. Etiology and pathogenesis of systemic sclerosis. In: Rheumatology: Sixth Edition. Vol. 2. Elsevier Inc; 2015.
  • PetreyAC, QeadanF, MiddletonAE, PinchukIV, CampbellRA, BeswickEJ. Cytokine release syndrome in COVID-19: innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. J Leukoc Biol. 2021;109(1):55–66. doi:10.1002/JLB.3COVA0820-410RRR32930456
  • Ferreira-GomesM, KruglovA, DurekP, HeinrichF. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat Commun. 2021;12(1). doi:10.1038/s41467-021-22210-3