176
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Application of Modified Carbapenem Inactivation Method and Its Derivative Tests for the Detection of Carbapenemase-Producing Aeromonas

, , &
Pages 3949-3960 | Published online: 24 Sep 2021

References

  • GajdácsM. The concept of an ideal antibiotic: implications for drug design. Molecules. 2019;24(5):892. doi:10.3390/molecules24050892
  • GajdácsM, BátoriZ, ÁbrókM, LázárA, BuriánK. Characterization of resistance in gram-negative urinary isolates using existing and novel indicators of clinical relevance: a 10-year data analysis. Life. 2020;10(2):16. doi:10.3390/life10020016
  • BonomoRA, BurdEM, ConlyJ, et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis. 2018;66(8):1290–1297. doi:10.1093/cid/cix89329165604
  • TammaPD, SimnerPJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J Clin Microbiol. 2018;56(11):e01140–e01218. doi:10.1128/JCM.01140-1830158194
  • SfeirMM, HaydenJA, FauntleroyKA, et al. EDTA-modified carbapenem inactivation method: a phenotypic method for detecting metallo-β-lactamase-producing Enterobacteriaceae. J Clin Microbiol. 2019;57(5):e01757–e01818. doi:10.1128/JCM.01757-1830867235
  • CuiX, ZhangH, DuH. Carbapenemases in Enterobacteriaceae: detection and antimicrobial therapy. Front Microbiol. 2019;10:1823. doi:10.3389/fmicb.2019.0182331481937
  • JuhászJ, LigetiB, GajdácsM, et al. Colonization dynamics of multidrug-resistant Klebsiella pneumonia are dictated by microbiota-cluster group behavior over individual antibiotic susceptibility: a metataxonomic analysis. Antibiotics. 2021;10(3):268. doi:10.3390/antibiotics1003026833800048
  • KhorWC, PuahSM, KohTH, TanJAMA, PuthuchearySD, ChuaKH. Comparison of clinical isolates of Aeromonas from Singapore and Malaysia with regard to molecular identification, virulence, and antimicrobial profiles. Microb Drug Resist. 2018;24(4):469–478. doi:10.1089/mdr.2017.008329461928
  • JandaJM, AbbottSL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23(1):35–73. doi:10.1128/CMR.00039-0920065325
  • HadiN, MahmoodiZ, EmamiA, MalekzadeganY, ValadbeygiT. Isolation and molecular identification of Aeromonas wound infection in Iranian burn patients. Infect Disord Drug Targets. 2019;19(3):269–273. doi:10.2174/187152651866618090316582330179147
  • OlszewskiAE, KarandikarMV, SuranaNK. Aeromonas as a cause of purulent folliculitis: a case report and review of the literature. J Pediatric Infect Dis Soc. 2017;6(1):e1–e3. doi:10.1093/jpids/piw07327988495
  • FouquetH, GuimasM, TeulierS, TestaertH, BergotE, Reviron-RabecL. Pneumopathie à Aeromonas liée aux noyades [Near-drowning associated Aeromonas pneumonia]. Rev Mal Respir. 2018;35(9):959–962. doi:10.1016/j.rmr.2018.08.00430220490
  • Nolla-SalasJ, Codina-CaleroJ, Vallés-AnguloS, et al. Clinical significance and outcome of Aeromonas spp. infections among 204 adult patients. Eur J Clin Microbiol Infect Dis. 2017;36(8):1393–1403. doi:10.1007/s10096-017-2945-428258303
  • GajdácsM. Resistance trends and epidemiology of Aeromonas and Plesiomonas infections (RETEPAPI): a 10-year retrospective survey. Infect Dis. 2019;51(9):710–713. doi:10.1080/23744235.2019.1640389
  • WuCJ, ChenPL, WuJJ, et al. Distribution and phenotypic and genotypic detection of a metallo-β-lactamase, CphA, among bacteraemic Aeromonas isolates. J Med Microbiol. 2012;61(5):712–719. doi:10.1099/jmm.0.038323-022322339
  • SinclairHA, HeneyC, SidjabatHE, et al. Genotypic and phenotypic identification of Aeromonas species and CphA-mediated carbapenem resistance in Queensland, Australia. Diagn Microbiol Infect Dis. 2016;85(1):98–101. doi:10.1016/j.diagmicrobio.2016.02.00526971634
  • NeuwirthC, SieborE, RobinF, BonnetR. First occurrence of an IMP metallo-beta-lactamase in Aeromonas caviae: IMP-19 in an isolate from France. Antimicrob Agents Chemother. 2007;51(12):4486–4488. doi:10.1128/AAC.01462-0617938180
  • LibischB, GiskeCG, KovácsB, TóthTG, FüziM. Identification of the first VIM metallo-beta-lactamase-producing multiresistant Aeromonas hydrophila strain. J Clin Microbiol. 2008;46(5):1878–1880. doi:10.1128/JCM.00047-0818367570
  • MontezziLF, CampanaEH, CorrêaLL, et al. Occurrence of carbapenemase-producing bacteria in coastal recreational waters. Int J Antimicrob Agents. 2015;45(2):174–177. doi:10.1016/j.ijantimicag.2014.10.01625499185
  • HughesHY, ConlanSP, LauAF, et al. Detection and whole-genome sequencing of carbapenemase-producing Aeromonas hydrophila isolates from routine perirectal surveillance culture. J Clin Microbiol. 2016;54(4):1167–1170. doi:10.1128/JCM.03229-1526888898
  • XuH, WangX, YuX, et al. First detection and genomics analysis of KPC-2-producing Citrobacter isolates from river sediments. Environ Pollut. 2018;235:931–937. doi:10.1016/j.envpol.2017.12.08429358148
  • AnandanS, GopiR, Devanga RagupathiNK, et al. First report of blaOXA-181-mediated carbapenem resistance in Aeromonas caviae in association with pKP3-A: threat for rapid dissemination. J Glob Antimicrob Resist. 2017;10:310–314. doi:10.1016/j.jgar.2017.07.00628743649
  • UechiK, TadaT, SawachiY, et al. A carbapenem-resistant clinical isolate of Aeromonas hydrophila in Japan harbouring an acquired gene encoding GES-24 β-lactamase. J Med Microbiol. 2018;67(11):1535–1537. doi:10.1099/jmm.0.00084230289383
  • BanerjeeT, PalS, DasA. Emergence of Aeromonas spp. harboring multiple carbapenemase-encoding genes from hospital sewage. J Lab Physicians. 2017;9(1):64–65. doi:10.4103/0974-2727.18792428042221
  • HrabákJ, ChudáčkováE, PapagiannitsisCC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect. 2014;20(9):839–853. doi:10.1111/1469-0691.1267824813781
  • PierceVM, SimnerPJ, LonswayDR, et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae. J Clin Microbiol. 2017;55(8):2321–2333. doi:10.1128/JCM.00193-1728381609
  • GajdácsM, ÁbrókM, LázárA, et al. Detection of VIM, NDM and OXA-48 producing carbapenem resistant Enterobacterales among clinical isolates in Southern Hungary. Acta Microbiol Immunol Hung. 2020;67(4):209–215. doi:10.1556/030.2020.0118133258795
  • JingX, ZhouH, MinX, et al. The Simplified Carbapenem Inactivation Method (sCIM) for simple and accurate detection of carbapenemase-producing gram-negative bacilli. Front Microbiol. 2018;9:2391. doi:10.3389/fmicb.2018.0239130425686
  • Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3rd ed. M45. PA: CLSI; 2016
  • Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: 30th Edition CLSI Supplement M100. PA: CLSI; 2020.
  • PuahSM, KhorWC, KeeBP, TanJA, PuthuchearySD, ChuaKH. Development of a species-specific PCR-RFLP targeting rpoD gene fragment for discrimination of Aeromonas species. J Med Microbiol. 2018;67(9):1271–1278. doi:10.1099/jmm.0.00079630024365
  • Gonçalves PessoaRB, de OliveiraWF, MarquesDSC, Dos Santos CorreiaMT, de CarvalhoEVMM, CoelhoLCBB. The genus Aeromonas: a general approach. Microb Pathog. 2019;130:81–94. doi:10.1016/j.micpath.2019.02.03630849490
  • LamyB, LaurentF, VerdierI, et al. Accuracy of 6 commercial systems for identifying clinical Aeromonas isolates. Diagn Microbiol Infect Dis. 2010;67(1):9–14. doi:10.1016/j.diagmicrobio.2009.12.01220167449
  • LamyB, KodjoA, LaurentF; ColBVH Study Group. Identification of Aeromonas isolates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis. 2011;71(1):1–5. doi:10.1016/j.diagmicrobio.2011.04.01421763094
  • Pérez-SanchoM, CerdáI, Fernández-BravoA, et al. Limited performance of MALDI-TOF for identification of fish Aeromonas isolates at species level. J Fish Dis. 2018;41(10):1485–1493. doi:10.1111/jfd.1283730105821
  • WuCJ, ChenPL, HsuehPR, et al. Clinical implications of species identification in monomicrobial Aeromonas bacteremia. PLoS One. 2015;10(2):e0117821. doi:10.1371/journal.pone.011782125679227
  • AdamsRJ, MathysDA, MollenkopfDF, WhittleA, DanielsJB, WittumTE. Carbapenemase-producing Aeromonas veronii disseminated in the environment of an equine specialty hospital. Vector Borne Zoonotic Dis. 2017;17(6):439–442. doi:10.1089/vbz.2016.208328346803
  • RheeJY, JungDS, PeckKR. Clinical and therapeutic implications of Aeromonas bacteremia: 14 years nation-wide experiences in Korea. Infect Chemother. 2016;48(4):274–284. doi:10.3947/ic.2016.48.4.27428032485
  • ParkerJL, ShawJG. Aeromonas spp. clinical microbiology and disease. J Infect. 2011;62(2):109–118. doi:10.1016/j.jinf.2010.12.00321163298
  • RossoliniGM, ZanchiA, ChiesurinA, AmicosanteG, SattaG, GuglielmettiP. Distribution of cphA or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aeromonas. Antimicrob Agents Chemother. 1995;39(2):346–349. doi:10.1128/AAC.39.2.3467726495
  • SegatoreB, MassiddaO, SattaG, SetacciD, AmicosanteG. High specificity of cphA-encoded metallo-beta-lactamase from Aeromonas hydrophila AE036 for carbapenems and its contribution to beta-lactam resistance. Antimicrob Agents Chemother. 1993;37(6):1324–1328. doi:10.1128/AAC.37.6.13248328781
  • Sánchez-CéspedesJ, FiguerasMJ, AspirozC, et al. Development of imipenem resistance in an Aeromonas veronii biovar sobria clinical isolate recovered from a patient with cholangitis. J Med Microbiol. 2009;58(4):451–455. doi:10.1099/jmm.0.47804-019273640