130
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Insertion Mutation of MSMEG_0392 Play an Important Role in Resistance of M. smegmatis to Mycobacteriophage SWU1

, , , , &
Pages 347-357 | Published online: 02 Feb 2022

References

  • Rahman MM, Rahim MR, Khaled A, Nasir TA, Nasrin F, Hasan MA. Molecular detection and differentiation of mycobacterium tuberculosis complex and non-tuberculous mycobacterium in the clinical specimens by real time PCR. Mymensingh Med J. 2017;26(3):614–620.
  • Chen S, Teng T, Wen S, Zhang T, Huang H. The aceE involves in mycolic acid synthesis and biofilm formation in Mycobacterium smegmatis. BMC Microbiol. 2020;20(1):259. doi:10.1186/s12866-020-01940-2
  • Chatterjee D. The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Curr Opin Chem Biol. 1997;1(4):579–588. doi:10.1016/S1367-5931(97)80055-5
  • Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 2003;83(1–3):91–97. doi:10.1016/S1472-9792(02)00089-6
  • Wang Z, Schwab U, Rhoades E, Chess PR, Russell DG, Notter RH. Peripheral cell wall lipids of Mycobacterium tuberculosis are inhibitory to surfactant function. Tuberculosis. 2008;88(3):178–186. doi:10.1016/j.tube.2007.11.003
  • Llorens-Fons M, Perez-Trujillo M, Julian E, et al. Trehalose polyphleates, external cell wall lipids in Mycobacterium abscessus, are associated with the formation of clumps with cording morphology, which have been associated with virulence. Front Microbiol. 2017;8:1402. doi:10.3389/fmicb.2017.01402
  • Akinyemi KO, Philipp W, Beyer W, Böhm R. Application of phage typing and pulsed-field gel electrophoresis to analyse Salmonella enterica isolates from a suspected outbreak in Lagos, Nigeria. J Infect Dev Ctries. 2010;4(12):828–833. doi:10.3855/jidc.744
  • Crunkhorn S. Phage therapy for Mycobacterium abscessus. Nat Rev Drug Discov. 2019;18(7):500.
  • El-Shibiny A, El-Sahhar S, Adel M. Phage applications for improving food safety and infection control in Egypt. J Appl Microbiol. 2017;123(2):556–567. doi:10.1111/jam.13500
  • Hashemi Shahraki A, Mirsaeidi M. Phage therapy for Mycobacterium abscessus and strategies to improve outcomes. Microorganisms. 2021;9(3):596. doi:10.3390/microorganisms9030596
  • Hemvani N, Patidar V, Chitnis DS. A simple and economical in-house phage technique for the rapid detection of rifampin, isoniazid, ethambutol, streptomycin, and ciprofloxacin drug resistance in Mycobacterium tuberculosis, directly on decontaminated sputum samples. Int J Infect Dis. 2012;16(5):e332–e336. doi:10.1016/j.ijid.2011.12.016
  • Nelson EJ, Chowdhury A, Flynn J, et al. Transmission of Vibrio cholerae is antagonized by lytic phage and entry into the aquatic environment. PLoS Pathog. 2008;4(10):e1000187. doi:10.1371/journal.ppat.1000187
  • Senhaji-Kacha A, Esteban J, Garcia-Quintanilla M. Considerations for phage therapy against Mycobacterium abscessus. Front Microbiol. 2020;11:609017. doi:10.3389/fmicb.2020.609017
  • Vikram A, Tokman JI, Woolston J, Sulakvelidze A. Phage biocontrol improves food safety by significantly reducing the level and prevalence of Escherichia coli O157: H7 in various foods. J Food Prot. 2020;83(4):668–676. doi:10.4315/0362-028X.JFP-19-433
  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25(5):730–733. doi:10.1038/s41591-019-0437-z
  • Wang Z, Cai R, Wang G, et al. Combination therapy of phage vB_KpnM_P-KP2 and gentamicin combats acute pneumonia caused by K47 serotype Klebsiella pneumoniae. Front Microbiol. 2021;12:674068. doi:10.3389/fmicb.2021.674068
  • Cano EJ, Caflisch KM, Bollyky PL, et al. Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clin Infect Dis. 2021;73(1):e144–e151. doi:10.1093/cid/ciaa705
  • Anand T, Virmani N, Kumar S, et al. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J Glob Antimicrob Resist. 2020;21:34–41. doi:10.1016/j.jgar.2019.09.018
  • Hung CH, Kuo CF, Wang CH, Wu CM, Tsao N. Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agents Chemother. 2011;55(4):1358–1365. doi:10.1128/AAC.01123-10
  • Bagińska N, Cieślik M, Górski A, Jończyk-Matysiak E. The role of antibiotic resistant A. baumannii in the Pathogenesis of urinary tract infection and the potential of its treatment with the use of bacteriophage therapy. Antibiotics. 2021;10(3):281. doi:10.3390/antibiotics10030281
  • Engeman E, Freyberger HR, Corey BW, et al. Synergistic killing and re-sensitization of pseudomonas aeruginosa to antibiotics by phage-antibiotic combination treatment. Pharmaceuticals. 2021;14(3):184. doi:10.3390/ph14030184
  • Hesse S, Rajaure M, Wall E, et al. Phage resistance in multidrug-resistant Klebsiella pneumoniae ST258 evolves via diverse mutations that culminate in impaired adsorption. mBio. 2020;11(1):e02530–e02519. doi:10.1128/mBio.02530-19
  • Tan D, Zhang Y, Qin J, et al. A frameshift mutation in wcaj associated with phage resistance in Klebsiella pneumoniae. Microorganisms. 2020;8(3):378. doi:10.3390/microorganisms8030378
  • Henrici De Angelis L, Poerio N, Di Pilato V, et al. Phage resistance is associated with decreased virulence in KPC-producing Klebsiella pneumoniae of the Clonal Group 258 Clade II Lineage. Microorganisms. 2021;9(4):762. doi:10.3390/microorganisms9040762
  • Majkowska-Skrobek G, Markwitz P, Sosnowska E, Lood C, Lavigne R, Drulis-Kawa Z. The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Environ Microbiol. 2021;23(12):7723–7740. doi:10.1111/1462-2920.15476
  • Laanto E, Makela K, Hoikkala V, Ravantti JJ, Sundberg LR. Adapting a phage to combat phage resistance. Antibiotics. 2020;9(6). doi:10.3390/antibiotics9060291
  • Broniewski JM, Meaden S, Paterson S, Buckling A, Westra ER. The effect of phage genetic diversity on bacterial resistance evolution. ISME J. 2020;14(3):828–836. doi:10.1038/s41396-019-0577-7
  • Bakli M, Karim L, Mokhtari-Soulimane N, Merzouk H, Vincent F. Biochemical characterization of a glycosyltransferase Gtf3 from Mycobacterium smegmatis: a case study of improved protein solubilization. 3 Biotech. 2020;10(10):436. doi:10.1007/s13205-020-02431-x
  • Deshayes C, Laval F, Montrozier H, Daffe M, Etienne G, Reyrat JM. A glycosyltransferase involved in biosynthesis of triglycosylated glycopeptidolipids in Mycobacterium smegmatis: impact on surface properties. J Bacteriol. 2005;187(21):7283–7291. doi:10.1128/JB.187.21.7283-7291.2005
  • Malm S, Walter K, Engel R, et al. In vitro and in vivo characterization of a Mycobacterium tuberculosis mutant deficient in glycosyltransferase Rv1500. Int J Med Microbiol. 2008;298(7–8):645–655. doi:10.1016/j.ijmm.2008.03.010
  • Sarkar D, Sidhu M, Singh A, et al. Identification of a glycosyltransferase from Mycobacterium marinum involved in addition of a caryophyllose moiety in lipooligosaccharides. J Bacteriol. 2011;193(9):2336–2340. doi:10.1128/JB.00065-11
  • Fan X, Teng T, Wang H, Xie J. Biology of a novel mycobacteriophage, SWU1, isolated from Chinese soil as revealed by genomic characteristics. J Virol. 2012;86(18):10230–10231. doi:10.1128/JVI.01568-12
  • Du Q, Long Q, Mao J, Fu T, Duan X, Xie J. Characterization of a novel mutation in the overlap of tlyA and ppnK involved in capreomycin resistance in Mycobacterium. IUBMB Life. 2014;66(6):405–414. doi:10.1002/iub.1277
  • Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques. 2007;43(5):649–650, 652, 654 passim. doi:10.2144/000112601
  • Cascioferro A, Boldrin F, Serafini A, Provvedi R, Palù G, Manganelli R. Xer site-specific recombination, an efficient tool to introduce unmarked deletions into mycobacteria. Appl Environ Microbiol. 2010;76(15):5312–5316. doi:10.1128/AEM.00382-10
  • Zhang Z, Wang R, Xie J. Mycobacterium smegmatis MSMEG_3705 encodes a selective major facilitator superfamily efflux pump with multiple roles. Curr Microbiol. 2015;70(6):801–809. doi:10.1007/s00284-015-0783-0
  • Haines MEK, Hodges FE, Nale JY, et al. Analysis of selection methods to develop novel phage therapy cocktails against antimicrobial resistant clinical isolates of bacteria. Front Microbiol. 2021;12:613529. doi:10.3389/fmicb.2021.613529
  • Miyamoto Y, Mukai T, Nakata N, et al. Identification and characterization of the genes involved in glycosylation pathways of mycobacterial glycopeptidolipid biosynthesis. J Bacteriol. 2006;188(1):86–95. doi:10.1128/JB.188.1.86-95.2006
  • Chen J, Kriakov J, Singh A, Jacobs WR, Besra GS, Bhatt A. Defects in glycopeptidolipid biosynthesis confer phage I3 resistance in Mycobacterium smegmatis. Microbiology. 2009;155(Pt12):4050–4057. doi:10.1099/mic.0.033209-0
  • Suarez CA, Franceschelli JJ, Tasselli SE, Morbidoni HR. Weirdo19ES is a novel singleton mycobacteriophage that selects for glycolipid deficient phage-resistant M. smegmatis mutants. PLoS One. 2020;15(5):e0231881. doi:10.1371/journal.pone.0231881
  • Espejo RT, Sinsheimer RL. The process of infection with bacteriophage phiX174. XXXIX. The structure of a DNA form with restricted binding of intercalating dyes observed during synthesis of phiX single-stranded DNA. J Mol Biol. 1976;102(4):723–741. doi:10.1016/0022-2836(76)90288-6
  • Zhang Z, Huang C, Pan W, Xie J. Intriguing arms race between phages and hosts and implications for better anti-infectives. Crit Rev Eukaryot Gene Expr. 2013;23(3):215–226. doi:10.1615/CritRevEukaryotGeneExpr.2013007250
  • Tukel C, Sanlibaba P, Ozden B, Akcelik M. Identification of adsorption inhibition, restriction/modification and abortive infection type phage resistance systems in Lactococcus lactis strains. Acta Biol Hung. 2006;57(3):377–385. doi:10.1556/ABiol.57.2006.3.11
  • Nir-Paz R, Eugster MR, Zeiman E, Loessner MJ, Calendar R. Listeria monocytogenes tyrosine phosphatases affect wall teichoic acid composition and phage resistance. FEMS Microbiol Lett. 2012;326(2):151–160. doi:10.1111/j.1574-6968.2011.02445.x
  • Shi K, Oakland JT, Kurniawan F, Moeller NH, Banerjee S, Aihara H. Structural basis of superinfection exclusion by bacteriophage T4 Spackle. Commun Biol. 2020;3(1):691. doi:10.1038/s42003-020-01412-3
  • Dupuis ME, Villion M, Magadan AH, Moineau S. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat Commun. 2013;4:2087. doi:10.1038/ncomms3087
  • Broniewski JM, Chisnall MAW, Høyland-Kroghsbo NM, Buckling A, Westra ER. The effect of Quorum sensing inhibitors on the evolution of CRISPR-based phage immunity in Pseudomonas aeruginosa. ISME J. 2021;15(8):2465–2473. doi:10.1038/s41396-021-00946-6
  • Abedon ST. Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiol. 2017;3(2):186–226. doi:10.3934/microbiol.2017.2.186
  • Dedrick RM, Smith BE, Garlena RA, et al. Mycobacterium abscessus strain morphotype determines phage susceptibility, the repertoire of therapeutically useful phages, and phage resistance. mBio. 2021;12(2). doi:10.1128/mBio.03431-20