231
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Candida albicans  Genotyping and Relationship of Virulence Factors with Fluconazole Tolerance in Infected Pediatric Patients

&
Pages 2035-2043 | Published online: 21 Apr 2022

References

  • Öncü B, Belet N, Emecen AN, et al. Health care-associated invasive Candida infections in children. Med Mycol. 2019;57(8):929–936. doi:10.1093/mmy/myz005
  • McCullough MJ, Clemons KV, Stevens DA. Molecular epidemiology of the global and temporal diversity of Candida albicans. Clin Infect Dis. 1999;29(5):1220–1225. doi:10.1086/313455
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–128. doi:10.4161/viru.22913
  • Mukherjee PK, Chandra J, Kuhn DM, et al. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun. 2003;71(8):4333–4340. doi:10.1128/IAI.71.8.4333-4340.2003
  • Schaller M, Borelli C, Korting HC, et al. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005;48(6):365–377. doi:10.1111/j.1439-0507.2005.01165.x
  • Naglik J, Albrecht A, Bader O, et al. Candida albicans proteinases and host/pathogen interactions. J Cell Microbiol. 2004;6(10):915–926. doi:10.1111/j.1462-5822.2004.00439.x
  • Pappas PG, Rex JH, Sobel JD, et al. Guidelines for treatment of candidiasis. Clin Infect Dis. 2004;38(2):161–189. doi:10.1086/380796
  • Delarze E, Sanglard D. Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resist Updat. 2015;23:12–19. doi:10.1016/j.drup.2015.10.001
  • Fridman O, Goldberg A, Ronin I, et al. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature. 2014;513(7518):418–421. doi:10.1038/nature13469
  • Marr KA, Rustad TR, Rex JH, et al. The trailing end point phenotype in antifungal susceptibility testing is pH dependent. Antimicrob Agents Chemother. 1999;43(6):1383–1386. doi:10.1128/AAC.43.6.1383
  • Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–332. doi:10.1016/j.ajic.2008.03.002
  • Koneman EW, Allen SD, Janda WM, Schrecken-berger RC, Winn WC. Introduction to microbiology. Part II: Guidelines for the collection transport, processing analysis and reporting of culture from specific specimen sources. In: Color Atlas and Textbook of Diagnostic Microbiology. 5th ed. Philadelphia: Lippincott-Raven; 1997:70–121.
  • McCullough MJ, Clemons KV, Stevens DA. Molecular and phenotypic characterization of genotypic Candida albicans subgroups and comparison with Candida dubliniensis and Candida stellatoidea. J Clin Microbiol. 1999;37(2):417–421. doi:10.1128/JCM.37.2.417-421.1999
  • Adachi H, Sshimizu K, Hattori H, et al. Genotyping of Candida albicans by fragment analysis of microsatellites combined with 25S rDNA and RPS-based strategies. Jpn J Med Mycol. 2009;50(3):167–174. doi:10.3314/jjmm.50.167
  • Tamura M, Watanabe K, Mikami Y, et al. Molecular characterization of new clinical isolates of Candida albicans and C. dubliniensis in Japan: analysis reveals a new genotype of C. albicans with group I intron. J Clin Microbiol. 2001;39(12):4309–4315. doi:10.1128/JCM.39.12.4309-4315.2001
  • Cassone A, De Bernardis F, Mondello F, et al. Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J Infect Dis. 1987;156(5):73–83. doi:10.1093/infdis/156.5.777
  • Barros LM, Boriollo MF, Alves AC, et al. Genetic diversity and exoenzyme activities of Candida albicans and Candida dubliniensis isolated from the oral cavity of Brazilian periodontal patients. Arch Oral Biol. 2008;53(12):1172–1178. doi:10.1016/j.archoralbio.2008.06.003
  • Price M, Wilkinson I, Gentry L. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982;20(1):7–14. doi:10.1080/00362178285380031
  • Shanmughapriya S, Francis AL, Kavitha S, Natarajaseenivasan K. In vitro actinomycetes biofilm development and biofilm inhibition by the polyene antibiotic, nystatin, on IUD copper surfaces. Biofouling. 2012;28(9):929–935. doi:10.1080/08927014.2012.717616
  • Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts; fourth international supplement. In: CLSI Document. Wayne, PA, USA: CLSI; 2012:M27–S4.
  • Lee MK, Kim HR, Kang JO, et al. Susceptibility and trailing growth of Candida albicans to fluconazole: results of a Korean multicentre study. Mycoses. 2007;50(2):148–149. doi:10.1111/j.1439-0507.2006.01329.x
  • Takakura S, Ichiyama S, Bain JM, et al. Comparison of Candida albicans strain types among isolates from three countries. Int J Med Microbiol. 2008;298(7–8):663–668. doi:10.1016/j.ijmm.2007.11.002
  • Da Matta DA, Melo AS, Guimarães T, et al. Multilocus sequence typing of sequential Candida albicans isolates from patients with persistent or recurrent fungemia. Med Mycol. 2010;48(5):757–762. doi:10.3109/13693780903501689
  • Sardi JC, Duque C, Hofling JF, et al. Genetic and phenotypic evaluation of Candida albicans strains isolated from subgingival biofilm of diabetic patients with chronic periodontitis. Med Mycol. 2012;5(5):467–475. doi:10.3109/13693786.2011.633233
  • Rosca I, Bostanaru AC, Minea B, et al. Phenotypic and genotypic variations in Candida albicans isolates from Romanian patients. Rev Rom Med Lab. 2018;26:405–413.
  • Tay ST, Abidin IA, Hassan H, et al. Proteinase, phospholipase, biofilm forming abilities and antifungal susceptibilities of Malaysian Candida isolates from blood cultures. Med Mycol. 2011;49(5):556–560. doi:10.3109/13693786.2010.551424
  • Mohammadi F, Ghasemi Z, Familsatarian B, et al. Relationship between antifungal susceptibility profile and virulence factors in Candida albicans isolated from nail specimens. Rev Soc Bras Med Trop. 2020;53:e20190214. doi:10.1590/0037-8682-0214-2019
  • El-Houssaini HH, Elnabawy OM, Nasser HA, et al. Correlation between antifungal resistance and virulence factors in Candida albicans recovered from vaginal specimens. Microb Pathog. 2019;128:13–19. doi:10.1016/j.micpath.2018.12.028
  • Mattei AS, Alves SH, Severo CB, et al. Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans. Rev Soc Bras Med Trop. 2013;46(3):340–342. doi:10.1590/0037-8682-0045-2013
  • de Souza Ramos L, Barbedo LS, Braga-Silva LA, et al. Protease and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol. 2015;32(2):122–125. doi:10.1016/j.riam.2014.01.003
  • Moron LS, Cabrera EC. ABC genotyping and putative virulence factors of Candida albicans clinical isolates. Malays J Microbiol. 2019;15:400–407.
  • Majumdar T, Mullick JB, Bir R, et al. Determination of virulence factors and biofilm formation among isolates of Vulvovaginal Candidiasis. J Med Sci. 2016;36(2):53–58. doi:10.4103/1011-4564.181521
  • Giolo MP, Svidzinski T.I.E. Physiopathogenesis, epidemiology and laboratory diagnosis of candidemia. J Bras Patol Med Lab. 2010;46(3):225–234. doi:10.1590/S1676-24442010000300009
  • Won EJ, Shin JH, Choi MJ, et al. Antifungal susceptibilities of bloodstream isolates of Candida species from nine hospitals in Korea: application of new antifungal breakpoints and relationship to antifungal usage. PLoS One. 2015;10(2):e0118770. doi:10.1371/journal.pone.0118770
  • Pfaller MA, Rhomberg PR, Messer SA, et al. Isavuconazole, micafungin, and 8 comparator antifungal agents‘ susceptibility profiles for common and uncommon opportunistic fungi collected in 2013: temporal analysis of antifungal drug resistance using CLSI species-specific clinical breakpoints and proposed epidemiological cutoff values. Diagn Microbiol Infect Dis. 2015;82(4):303–313. doi:10.1016/j.diagmicrobio.2015.04.008
  • Castanheira M, Messer SA, Rhomberg PR, et al. Isavuconazole and nine comparator antifungal susceptibility profiles for common and uncommon Candida species collected in 2012: application of new CLSI clinical breakpoints and epidemiological cutoff values. Mycopathologia. 2012;178(1–2):1–9. doi:10.1007/s11046-014-9772-2
  • La Fleur MD, Kumamoto C, Lewis L. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Ch. 2006;50(11):3839–3846. doi:10.1128/AAC.00684-06
  • Karababa M, Valentino E, Pardini G, et al. CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol. 2006;59(5):1429–1451. doi:10.1111/j.1365-2958.2005.05037.x
  • Sanglard D, Ischer F, Marchetti O, et al. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol. 2003;48(4):959–976. doi:10.1046/j.1365-2958.2003.03495.x
  • Jia Y, Tang RJ, Wang L, et al. Calcium-activated-calcineurin reduces the in vitro and in vivo sensitivity of fluconazole to Candida albicans via Rta2p. PLoS One. 2012;7(10):e48369. doi:10.1371/journal.pone.0048369