202
Views
3
CrossRef citations to date
0
Altmetric
SHORT REPORT

Genetic Characterization of Colistin-Resistant Salmonella enterica ST34 Co-Harbouring Plasmid-Borne mcr-1, blaCTX-M-15 and blaKPC-2 Recovered from a Paediatric Patient in Shenzhen, China

ORCID Icon, , , ORCID Icon, &
Pages 757-763 | Published online: 02 Mar 2022

References

  • Besser JM. Salmonella epidemiology: a whirlwind of change. Food Microbiol. 2018;71:55–59. doi:10.1016/j.fm.2017.08.018
  • Eng S-K, Pusparajah P, Ab Mutalib N-S, Ser H-L, Chan K-G, Lee L. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci. 2015;8(3):284–293. doi:10.1080/21553769.2015.1051243
  • World Health Organization. Critically important antimicrobials for human medicine, 5th revision; 2017. Available from: https://www.who.int/foodsafety/publications/antimicrobials-fifth/en/. Accessed February 22, 2022.
  • Patil S, Chen X, Lian M, Wen F. Phenotypic and genotypic characterization of multi-drug-resistant Escherichia coli isolates harboring blaCTX-M group extended-spectrum β-lactamases recovered from pediatric patients in Shenzhen, southern China. Infect Drug Resist. 2019;12:1325–1332. doi:10.2147/IDR.S199861
  • Patil S, Chen X, Wen F. Exploring the phenotype and genotype of multi-drug resistant Klebsiella pneumoniae harbouring blaCTX-M group extended-spectrum β-lactamases recovered from paediatric clinical cases in Shenzhen, China. Ann Clin Microbiol Antimicrob. 2019;18:32. doi:10.1186/s12941-019-0331-z
  • Liu Y, Wang Y, Walsh T, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168. doi:10.1016/S1473-3099(15)00424-7
  • Carattoli A, Villa L, Feudi C, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017;22(31):30589. doi:10.2807/1560-7917.ES.2017.22.31.30589
  • Borowiak M, Fischer J, Hammerl J, Hendriksen R, Szabo I, Malorny B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi-B. J Antimicrob Chemother. 2017;72(12):3317–3324. doi:10.1093/jac/dkx327
  • Carroll M, Gaballa A, Guldimann C, Sullivan G, Henderson O, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype typhimurium isolate. mBio. 2019;10(3):e00853–e00919.
  • Li X-P, Fang L-X, Song J-Q, et al. Clonal spread of mcr-1 in PMQR-carrying ST34 Salmonella isolates from animals in China. Sci Rep. 2016;6(1):38511. doi:10.1038/srep38511
  • Luo Q, Wan F, Yu X, et al. MDR Salmonella enterica serovar Typhimurium ST34 carrying mcr-1 isolated from cases of bloodstream and intestinal infection in children in China. J Antimicrob Chemother. 2020;75(1):92–95. doi:10.1093/jac/dkz415
  • Woh Y, Yeung P, Nelson E, Goggins WBIII. Risk factors of non-typhoidal Salmonella gastroenteritis in hospitalised young children: a case–control study. BMJ Paediatric. 2021;5(1):e000898. doi:10.1136/bmjpo-2020-000898
  • Chang Y-J, Chen C, Feng Y, et al. Highly antimicrobial-resistant Nontyphoidal Salmonella from retail meats and clinical impact in children, Taiwan. Pediatr Neonatol. 2020;61(4):432–438. doi:10.1016/j.pedneo.2020.03.017
  • Sandip P, Jiang M, Wen F. Molecular characterization of co-existence of MCR-1 and NDM-1 in extended-spectrum β-Lactamase-producing Escherichia coli ST648 isolated from a colonized patient in China. Jundishapur J Microbiol. 2019;12(7):e91272.
  • M100-S25 performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement; 2015.
  • The European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute Recommendations for MIC determination of colistin (polymyxin E) as recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group; 2016.
  • Long H, Feng Y, Ma K, Liu L, McNally A, Zong Z. The co-transfer of plasmid-borne colistin-resistant genes mcr-1 and mcr-3.5, the carbapenemase gene blaNDM-5 and the 16S methylase gene rmtB from Escherichia coli. Sci Rep. 2019;9(1):696. doi:10.1038/s41598-018-37125-1
  • Luo Q, Yu W, Zhou K, et al. Molecular epidemiology and colistin-resistant mechanism of mcr-positive and mcr-negative clinical isolated Escherichia coli. Front Microbiol. 2017;8:2262. doi:10.3389/fmicb.2017.02262
  • Larsen V, Cosentino S, Rasmussen S, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–1361. doi:10.1128/JCM.06094-11
  • Grégoire N, Aranzana-Climent V, Magréault S, Marchand S, Couet W. Clinical pharmacokinetics and pharmacodynamics of colistin. Clin Pharmacokinet. 2017;56(12):1441–1460. doi:10.1007/s40262-017-0561-1
  • Andrade F, Silva D, Rodrigues A, Pina-Vaz C. Colistin update on its mechanism of action and resistance, present and future challenges. Microorganisms. 2020;8(11):1716. doi:10.3390/microorganisms8111716
  • Zhao D, Zhou Z, Hua X, et al. Co-existence of mcr-1, blaKPC-2 and two copies of fosA3 in a clinical Escherichia coli strain isolated from urine. Infect. Genet. Evol. 2018;60:77–79. doi:10.1016/j.meegid.2018.02.025
  • Cao X, Zhong Q, Guo Y, et al. Emergence of the coexistence of mcr-1, blaNDM-5, and blaCTX-M-55 in Klebsiella pneumoniae ST485 clinical isolates in China. Infect Drug Resist. 2021;14:3449–3458. doi:10.2147/IDR.S311808
  • Ana B, Grazielle R, Mylenna P, Rafaela F, Carlos A, Pedro P. Global distribution of plasmid-mediated colistin resistance mcr gene in Salmonella: a systematic review. J Appl Microbiol. 2021;00:1–18.
  • Liu G, Qian H, Lv J, et al. Emergence of mcr-1-harboring Salmonella enterica serovar sinstorf type ST155 isolated from patients with diarrhoea in Jiangsu, China. Front Microbiol. 2021;12:723697. doi:10.3389/fmicb.2021.723697
  • Zhang R, Liu L, Zhou H, et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine. 2017;19:98–106. doi:10.1016/j.ebiom.2017.04.032
  • Branchu P, Charity O, Bawn M, et al. SGI-4 in monophasic salmonella typhimurium ST34 is a novel ICE that enhances resistance to copper. Front Microbiol. 2019;10:1118. doi:10.3389/fmicb.2019.01118
  • Sana G, Flaugnatti N, Lugo A, et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. PNAS. 2016;113:e5044–e5051. doi:10.1073/pnas.1608858113
  • Kai Z, Haojie G, Jingjing H, et al. Salmonella Typhimurium ST34 isolate was more resistant than the ST19 isolate in China, 2007 − 2019. Foodborne Pathog Dis. 2021;Ahead of Print:45.
  • Sun J, Fang L-X, Wu Z, et al. Genetic analysis of the IncX4 plasmids: implications for a unique pattern in the mcr-1 acquisition. Sci Rep. 2017;7(1):424. doi:10.1038/s41598-017-00095-x
  • Wang R, van Dorp L, Shaw P, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun. 2018;9(1):1179. doi:10.1038/s41467-018-03205-z