204
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Comparative Proteomic Analysis Reveals Antibacterial Mechanism of Patrinia scabiosaefolia Against Methicillin Resistant Staphylococcus epidermidis

, , , &
Pages 883-893 | Published online: 06 Mar 2022

References

  • Ehlers MM, Wilhelmina S, Michelle L, Veronica U, Kock MM. Molecular epidemiology of Staphylococcus epidermidis implicated in catheter-related bloodstream infections at an academic hospital in Pretoria, South Africa. Front Microbiol. 2018;9:417. doi:10.3389/fmicb.2018.00417
  • Oliveira WF, Silva P, Silva R, et al. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect. 2017;45:111–117. doi:10.1007/s15010-016-0941-8
  • Al-Awadi AQ, Ahmed M. Antimicrobial activity of chamomile extract against multidrug resistance Pseudomonas aeruginosa and Staphylococcus epidermidis during experimental skin infections in mice. In: (EurasianSciEnTech 2018) November 22-23, 2018/Ankara, Turkey: 2019; 2019.
  • Lam AK, Hill MA, Moen EL, Pusavat J, Wouters CL, Rice CV. Cationic branched polyethylenimine (BPEI) disables antibiotic resistance in Methicillin-resistant Staphylococcus epidermidis (MRSE). Chem Med Chem. 2018;13(20):2240–2248. doi:10.1002/cmdc.201800433
  • Guarrera PM. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia. 2005;76(1):1–25. doi:10.1016/j.fitote.2004.09.006
  • Khayam SMU, Abdul S, Faidah HS, et al. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug Des Devel Ther. 2018;12:303–312. doi:10.2147/DDDT.S156123
  • Martins M, Dastidar SG, Fanning S, et al. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities. Int J Antimicrob Agents. 2008;31(3):198–208. doi:10.1016/j.ijantimicag.2007.10.025
  • Meng L, Chen S, Zhou L, Liu Z, Kang W, Kang W. Chemical constituents and pharmacological effects of Genus Patrinia: a review. Curr Pharmacol Rep. 2020;6(6):1–35. doi:10.1007/s40495-020-00240-7
  • Yao L, Yang Y, He G, Ou C, Wang L, Liu K. Global proteomics deciphered novel-function of osthole against pulmonary arterial hypertension. Sci Rep. 2018;8(1):5556. doi:10.1038/s41598-018-23775-8
  • Liu X, Wang J, Chen M, Che R, Li Y. Comparative proteomic analysis reveals drug resistance of Staphylococcus xylosus ATCC700404 under tylosin stress. BMC Vet Res. 2019;15:1. doi:10.1186/s12917-019-1959-9
  • Chang-Ro L, Hun LJ, Seung PK, Chul JB, Hee LS. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review. Front Microbiol. 2015;6:828. doi:10.3389/fmicb.2015.00828
  • Suo T, Wang H, Li Z. Application of proteomics in research on traditional Chinese Medicine. Expert Rev Proteomics. 2016;13(9):873–881. doi:10.1080/14789450.2016.1220837
  • Cao JY, Xu YP, Cai XZ. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. J Proteomics. 2016;143:265–277. doi:10.1016/j.jprot.2016.03.006
  • Luo JY, Yan D, Yang MH. Study of the anti-MRSA activity of Rhizoma coptidis by chemical fingerprinting and broth microdilution methods. Chin J Nat Med. 2014;12(5):8.
  • Chen K, Wu W, Hou X, Yang Q, Li Z. A review: antimicrobial properties of several medicinal plants widely used in Traditional Chinese Medicine. Food Qual Saf. 2021;5. doi:10.1093/fqsafe/fyab020
  • Ying D, Kg A, Ns B, Hc C, Cps A. An underestimated pathogen: staphylococcus epidermidis induces pro-inflammatory responses in human alveolar epithelial cells - ScienceDirect. Cytokine. 2019;123:154761. doi:10.1016/j.cyto.2019.154761
  • Rodríguez-Lucas C, Fernández J, Boga JA, et al. Nosocomial ventriculitis caused by a methicillin- and linezolid-resistant clone of Staphylococcus epidermidis in neurosurgical patients. J Hosp Infect. 2018;100:406–410.
  • Baos E, Candel FJ, Merino P, Pena I, Picazo JJ. Characterization and monitoring of linezolid-resistant clinical isolates of Staphylococcus epidermidis in an intensive care unit 4 years after an outbreak of infection by CFR-mediated linezolid-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2013;76(3):325–329. doi:10.1016/j.diagmicrobio.2013.04.002
  • Xing QQ, Liu LW, Zhao X, Lu Y, Liang ZQ, Liang Z-Q. Serum proteomics analysis based on label-free revealed the protective effect of Chinese herbal formula Gu-Ben-Fang-Xiao. Biomed Pharmacother. 2019;119:109390. doi:10.1016/j.biopha.2019.109390
  • Wilhelm M, Schlegl J, Hahne H, Gholami AM, Kuster B. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509(7502):582–587. doi:10.1038/nature13319
  • Albanesi D, Mansilla MC, Schujman GE, Mendoza DD. Bacillus subtilis cysteine synthetase is a global regulator of the expression of genes involved in sulfur assimilation. J Bacteriol. 2005;187(22):7631–7638. doi:10.1128/JB.187.22.7631-7638.2005
  • Lin J, Luo X, Gnzle MG, Luo L. Characterization of the two nonidentical ArgR regulators of Tetragenococcus halophilus and their regulatory effects on arginine metabolism. Appl Microbiol Biotechnol. 2020;104(20):1–13. doi:10.1007/s00253-020-10868-6
  • Tan XE, Neoh HM, Looi ML, et al. Activated ADI pathway: the initiator of intermediate vancomycin resistance in Staphylococcus aureus. Can J Microbiol. 2017;63:260–264.
  • Gruening P, Fulde M, Valentin-Weigand P, Goethe R. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol. 2006;188(2):361. doi:10.1128/JB.188.2.361-369.2006
  • Ibba M, Soll D. Aminoacyl-tRNA Synthesis. Annu Rev Biochem. 2000;69(1):617–650. doi:10.1146/annurev.biochem.69.1.617
  • Hurdle JG, O’Neill AJ, Chopra I. Prospects for aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents. Antimicrob Agents Chemother. 2005;49(12):4821–4833. doi:10.1128/AAC.49.12.4821-4833.2005
  • Tao J, Wendler P, Connelly G. Drug target validation: lethal infection blocked by inducible peptide. Proc Natl Acad Sci U S A. 2000;97(2):783–786. doi:10.1073/pnas.97.2.783
  • Boyce JM. MRSA patients: proven methods to treat colonization and infection. J Hosp Infect. 2001;48(4):S9–S14. doi:10.1016/S0195-6701(01)90005-2
  • Hyyrylainen HL, Vitikainen M, Thwaite J, et al. D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. J Biol Chem. 2000;275(35):26696–26703. doi:10.1016/S0021-9258(19)61432-8
  • Fischer W. Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol. 1988;29:233–302.
  • Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. J Biol Chem. 1995;270(26):15598–15606. doi:10.1074/jbc.270.26.15598
  • Peschel A, Otto M, Jack RW, Kalbacher H, Gtz F, Götz F. Inactivation of the dlt Operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem. 1999;274(13):8405–8410. doi:10.1074/jbc.274.13.8405
  • Neuhaus FC, Heaton MP, Debabov DV, Zhang Q. The dlt Operon in the biosynthesis of D -alanyl-lipoteichoic acid in Lactobacillus casei. Microb Drug Resist. 1996;2(1):77–84. doi:10.1089/mdr.1996.2.77
  • Cui WQ, Qu QW, Wang JP, et al. Discovery of potential anti-infective therapy targeting glutamine synthetase in Staphylococcus xylosus. Front Chem. 2019:381. doi:10.3389/fchem.2019.00381
  • Fayad AN. The prevalence of serine-aspartate dipeptide-repeat region (sdr C and E) putative virulence gene among local isolates of Staphylococcus aureus from different sources. Univ Thi-Qar J Med. 2018;16:142–148.
  • Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol. 2000;54:881–941. doi:10.1146/annurev.micro.54.1.881