122
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Detection of NDM-1-Positive Aeromonas caviae from Bacteremia by Using Whole-Genome Sequencing

, , , , ORCID Icon, & show all
Pages 2835-2841 | Published online: 02 Jun 2022

References

  • Fernandez-Bravo A, Figueras MJ. An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms. 2020;8(1):129. doi:10.3390/microorganisms8010129
  • Castelo-Branco DS, Silva AL, Monteiro FO, et al. Aeromonas and Plesiomonas species from scarlet ibis (Eudocimus ruber) and their environment: monitoring antimicrobial susceptibility and virulence. Antonie Leeuwenhoek. 2017;110(1):33–43. doi:10.1007/s10482-016-0771-9
  • Rosso F, Cedano JA, Parra-Lara LG, et al. Emerging carbapenem-resistant Aeromonas spp. infections in Cali, Colombia. Braz J Infect Dis. 2019;23(5):336–342. doi:10.1016/j.bjid.2019.08.005
  • Kitagawa H, Ohge H, Yu L, et al. Aeromonas dhakensis is not a rare cause of Aeromonas bacteremia in Hiroshima, Japan. J Infect Chemother. 2020;26(2):316–320. doi:10.1016/j.jiac.2019.08.020
  • De Silva L, Wickramanayake M, Heo GJ. Virulence and antimicrobial resistance potential of Aeromonas spp. associated with shellfish. Lett Appl Microbiol. 2021;73(2):176–186. doi:10.1111/lam.13489
  • Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785–796. doi:10.1016/S1473-3099(13)70190-7
  • Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemases. Trends Microbiol. 2011;19(12):588–595. doi:10.1016/j.tim.2011.09.005
  • Han R, Shi Q, Wu S, et al. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among Carbapenem-resistant Enterobacteriaceae isolated from adult and children patients in China. Front Cell Infect Microbiol. 2020;10:314. doi:10.3389/fcimb.2020.00314
  • Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597–602. doi:10.1016/S1473-3099(10)70143-2
  • Villacis JE, Bovera M, Romero-Alvarez D, et al. NDM-1 carbapenemase in Acinetobacter baumannii sequence type 32 in Ecuador. New Microbes New Infect. 2019;29:100526. doi:10.1016/j.nmni.2019.100526
  • Bassetti M, Giacobbe DR, Giamarellou H, et al. Management of KPC-producing Klebsiella pneumoniae infections. Clin Microbiol Infect. 2018;24(2):133–144. doi:10.1016/j.cmi.2017.08.030
  • Falcone M, Daikos GL, Tiseo G, et al. Efficacy of Ceftazidime-avibactam plus Aztreonam in patients with bloodstream infections caused by metallo-beta-lactamase-producing Enterobacterales. Clin Infect Dis. 2021;72(11):1871–1878. doi:10.1093/cid/ciaa586
  • Zheng B, Zhang J, Ji J, et al. Emergence of Raoultella ornithinolytica coproducing IMP-4 and KPC-2 Carbapenemases in China. Antimicrob Agents Chemother. 2015;59(11):7086–7089. doi:10.1128/AAC.01363-15
  • Lellouche J, Schwartz D, Elmalech N, et al. Combining VITEK((R)) 2 with colistin agar dilution screening assist timely reporting of colistin susceptibility. Clin Microbiol Infect. 2019;25(6):711–716. doi:10.1016/j.cmi.2018.09.014
  • Xu H, Wang X, Yu X, et al. First detection and genomics analysis of KPC-2-producing Citrobacter isolates from river sediments. Environ Pollut. 2018;235:931–937. doi:10.1016/j.envpol.2017.12.084
  • Stohr J, Kluytmans-van den Bergh MFQ, Weterings V, Rossen JWA, Kluytmans J. Distinguishing bla KPC gene-containing IncF plasmids from epidemiologically related and unrelated Enterobacteriaceae based on short- and long-read sequence data. Antimicrob Agents Chemother. 2021;65(6). doi:10.1128/AAC.00147-21
  • Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43(3):e15. doi:10.1093/nar/gku1196
  • Liang Z, Pang J, Hu X, et al. Low prevalence of mcr-1 among clinical Enterobacteriaceae isolates and co-transfer of mcr-1 and blaNDM-1 from separate donors. Microb Drug Resist. 2021;27(4):476–484. doi:10.1089/mdr.2020.0212
  • Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23(1):35–73. doi:10.1128/CMR.00039-09
  • Vila J, Ruiz J, Gallardo F, et al. Aeromonas spp. and traveler’s diarrhea: clinical features and antimicrobial resistance. Emerg Infect Dis. 2003;9(5):552–555. doi:10.3201/eid0905.020451
  • Codjoe FS, Donkor ES. Carbapenem resistance: a review. Med Sci. 2017;6(1):1.
  • Dias C, Serra CR, Simoes LC, Simoes M, Martinez-Murcia A, Saavedra MJ. Extended-spectrum beta-lactamase and carbapenemase-producing Aeromonas species in wild animals from Portugal. Vet Rec. 2014;174(21):532. doi:10.1136/vr.101803
  • Chi X, Berglund B, Zou H, et al. Characterization of clinically relevant strains of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae occurring in environmental sources in a rural area of China by using whole-genome sequencing. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.00211
  • Silva L, Leal-Balbino TC, Melo BST, et al. Genetic diversity and virulence potential of clinical and environmental Aeromonas spp. isolates from a diarrhea outbreak. BMC Microbiol. 2017;17(1):179. doi:10.1186/s12866-017-1089-0
  • Tomas JM. The main Aeromonas pathogenic factors. ISRN Microbiol. 2012;2012:256261. doi:10.5402/2012/256261
  • Batra P, Mathur P, Misra MC. Aeromonas spp.: an emerging nosocomial pathogen. J Lab Physicians. 2016;8(1):1–4. doi:10.4103/0974-2727.176234
  • Hofer E, Reis CM, Theophilo GN, Cavalcanti VO, Lima NV, Henriques Mde F. [Aeromonas associated with an acute diarrhea outbreak in Sao Bento do Una, Pernambuco]. Rev Soc Bras Med Trop. 2006;39(2):217–220. Swedish. doi:10.1590/S0037-86822006000200016
  • Kim JS, Jin YH, Park SH, et al. Horizontal transfer of blaNDM-1-carrying IncX3 plasmid between carbapenem-resistant Enterobacteriaceae in a single patient. J Infect. 2020;81(5):816–846. doi:10.1016/j.jinf.2020.07.013