229
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Characterization of Fluoroquinolone-Resistant and Multidrug-Resistant Mycobacterium tuberculosis Isolates Using Whole-Genome Sequencing in Tianjin, China

ORCID Icon, , , , , , , & show all
Pages 1793-1803 | Published online: 13 Apr 2022

References

  • World Health Organization. Global Tuberculosis Report 2021. Licence: CC BY-NC-SA 3.0 IGO. Geneva: World Health Organization;2021.
  • Avalos E, Catanzaro D, Catanzaro A, et al. Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: a systematic review. PLoS One. 2015;10(3):e0120470. doi:10.1371/journal.pone.0120470
  • Cao Y, Parmar H, Gaur RL, et al. Xpert MTB/XDR: a 10-color reflex assay suitable for point-of-care settings to detect isoniazid, fluoroquinolone, and second-line-injectable-drug resistance directly from Mycobacterium tuberculosis-positive sputum. J ClinMicrobiol. 2021;59(3):e02314–20. doi:10.1128/JCM.02314-20
  • Lee EH, Yong SH, Leem AY, et al. Improved fluoroquinolone-resistant and extensively drug-resistant tuberculosis treatment outcomes. Open Forum Infect Dis. 2019;6(4):ofz118. doi:10.1093/ofid/ofz118
  • Zong K, Luo C, Zhou H, et al. Xpert MTB/RIF assay for the diagnosis of rifampicin resistance in different regions: a meta-analysis. BMC Microbiol. 2019;19(1):177. doi:10.1186/s12866-019-1516-5
  • Deelder W, Christakoudi S, Phelan J, et al. Machine learning predicts accurately Mycobacterium tuberculosis Drug resistance from whole genome sequencing data. Front Genet. 2019;10:922. doi:10.3389/fgene.2019.00922
  • Köser CU, Bryant JM, Becq J, et al. Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis. N Engl J Med. 2013;369(3):290–292. doi:10.1056/NEJMc1215305
  • Maruri F, Guo Y, Blackman A, et al. Resistance-conferring mutations on whole-genome sequencing of fluoroquinolone-resistant and -susceptible Mycobacterium tuberculosis isolates: a proposed threshold for identifying resistance. Clin Infect Dis. 2021;72(11):1910–1918. doi:10.1093/cid/ciaa496
  • Papaventsis D, Casali N, Kontsevaya I, et al. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clin MicrobiolInfect. 2017;23(2):61–68. doi:10.1016/j.cmi.2016.09.008
  • Zaw MT, Emran NA, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J Infect Public Health. 2018;11(5):605–610. doi:10.1016/j.jiph.2018.04.005
  • Seifert M, Catanzaro D, Catanzaro A, et al. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One. 2015;10(3):e0119628. doi:10.1371/journal.pone.0119628
  • Sekiguchi J, Miyoshi-Akiyama T, Augustynowicz-Kopeć E, et al. Detection of multidrug resistance in Mycobacterium tuberculosis. J Clin Microbiol. 2007;45(1):179–192. doi:10.1128/JCM.00750-06
  • Bwalya P, Yamaguchi T, Solo ES, et al. Characterization of mutations associated with streptomycin resistance in multidrug-resistant Mycobacterium tuberculosis in Zambia. Antibiotics. 2021;10(10):1169. doi:10.3390/antibiotics10101169
  • Tam KK, Leung KS, Siu GK, et al. Direct detection of pyrazinamide resistance in Mycobacterium tuberculosis by use of pncA PCR sequencing. J ClinMicrobiol. 2019;57(8):e00145–19. doi:10.1128/JCM.00145-19
  • Charoenpak R, Santimaleeworagun W, Suwanpimolkul G, et al. Association between the phenotype and genotype of isoniazid resistance among Mycobacterium tuberculosis isolates in Thailand. Infect Drug Resist. 2020;13:627–634. doi:10.2147/IDR.S242261
  • Chernyaeva EN, Shulgina MV, Rotkevich MS, et al. Genome-wide Mycobacterium tuberculosis variation (GMTV) database: a new tool for integrating sequence variations and epidemiology. BMC Genomics. 2014;15:308. doi:10.1186/1471-2164-15-308.
  • World Health Organization.The Use of Next-Generation Sequencing Technologies for the Detection of Mutations Associated with Drug Resistance in Mycobacterium Tuberculosis Complex: TechnicalGuide. World Health Organization; 2018.
  • Brossier F, Sougakoff W, Bernard C, et al. Molecular analysis of the embCAB locus and embR gene involved in ethambutol resistance in clinical isolates of Mycobacterium tuberculosis in France. Antimicrob Agents Chemother. 2015;59(8):4800–4808. doi:10.1128/AAC.00150-15
  • Andres S, Gröschel MI, Hillemann D, et al. A diagnostic algorithm to investigate pyrazinamide and ethambutol resistance in rifampin-resistant Mycobacterium tuberculosis isolates in a low-incidence setting. Antimicrob Agents Chemother. 2019;63(2):e01798–18. doi:10.1128/AAC.01798-18
  • Ramaswamy SV, Amin AG, Göksel S, et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000;44(2):326–336. doi:10.1128/AAC.44.2.326-336.2000
  • Luo M, Li K, Zhang H, et al. Molecular characterization of para-aminosalicylic acid resistant Mycobacterium tuberculosis clinical isolates in southwestern China. Infect Drug Resist. 2019;12:2269–2275. doi:10.2147/IDR.S207259
  • Barbier M, Wirth T. The evolutionary history, demography, and spread of the Mycobacterium tuberculosis complex. MicrobiolSpectr. 2016;4(4):53. doi:10.1128/microbiolspec.TBTB2-0008-2016
  • Rigouts L, Miotto P, Schats M, et al. Fluoroquinolone heteroresistance in Mycobacterium tuberculosis: detection by genotypic and phenotypic assays in experimentally mixed populations. Sci Rep. 2019;9(1):11760. doi:10.1038/s41598-019-48289-9
  • Georghiou SB, Magana M, Garfein RS, et al. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One. 2012;7(3):e33275. doi:10.1371/journal.pone.0033275
  • Rahman A, Ferdous SS, Ahmed S, et al. Pyrazinamide susceptibility and pncA mutation profiles of Mycobacterium tuberculosis among multidrug-resistant tuberculosis patients in Bangladesh. Antimicrob Agents Chemother. 2017;61(9):e00511–17. doi:10.1128/AAC.00511-17
  • Khan MT, Malik SI, Ali S, et al. Pyrazinamide resistance and mutations in pncA among isolates of Mycobacterium tuberculosis from Khyber Pakhtunkhwa, Pakistan. BMC Infect Dis. 2019;19(1):116. doi:10.1186/s12879-019-3764-2
  • Zhang Y, Zhang J, Cui P, et al. Identification of novel efflux proteins Rv0191, Rv3756c, Rv3008, and Rv1667c involved in pyrazinamide resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2017;61(8):e00940–17. doi:10.1128/AAC.00940-17
  • Tan Y, Su B, Zheng H, et al. Molecular characterization of prothionamide-resistant Mycobacterium tuberculosis isolates in Southern China. Front Microbiol. 2017;8:2358. doi:10.3389/fmicb.2017.02358
  • Fenner L, Egger M, Bodmer T, et al. Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012;56(6):3047–3053. doi:10.1128/AAC.06460-11
  • Goossens SN, Sampson SL, Van Rie A. Mechanisms of drug-induced tolerance in Mycobacterium tuberculosis. ClinMicrobiolRev. 2020;34(1):e00141-20. doi:10.1128/CMR.00141-20
  • Jajou R, van der Laan T, de Zwaan R, et al. WGS more accurately predicts susceptibility of Mycobacterium tuberculosis to first-line drugs than phenotypic testing. J AntimicrobChemother. 2019;74(9):2605–2616. doi:10.1093/jac/dkz215