445
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Assessment of Phage-Mediated Inhibition and Removal of Multidrug-Resistant Pseudomonas aeruginosa Biofilm on Medical Implants

ORCID Icon, , , & ORCID Icon
Pages 2797-2811 | Published online: 31 May 2022

References

  • Centers for Disease Control and Prevention. Disinfection of healthcare equipment. Available from: https://www.cdc.gov/infectioncontrol/guidelines/disinfection/healthcare-equipment.html. Accessed October 20, 2020.
  • Brindhadevi K, LewisOscar F, Mylonakis E, Shanmugam S, Verma TN, Pugazhendhi A. Biofilm and quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochem. 2020;96:49–57. doi:10.1016/j.procbio.2020.06.001
  • Weiner-Lastinger LM, Abner S, Edwards JR, et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol. 2020;41(1):1–18. doi:10.1017/ice.2019.296
  • Yallew WW, Takele AK, Yehuala FM. Point prevalence of hospital-acquired infections in two teaching hospitals of Amhara region in Ethiopia. Drug Healthc Patient Saf. 2016;8:71–76. doi:10.2147/DHPS.S107344
  • Endalafer N, Gebre-Selassie S, Kotiso B. Nosocomial bacterial infections in a tertiary hospital in Ethiopia. J Infect Prev. 2011;12(1):38–43. doi:10.1177/1757177410376680
  • Amorese V, Donadu MG, Usai D, et al. In vitro activity of essential oils against Pseudomonas aeruginosa isolated from infected hip implants. J Infect Dev Ctries. 2018;12(11):996–1001. doi:10.3855/jidc.10988
  • Li Y, Wang W, Han J, et al. Synthesis of silver- and strontium-substituted hydroxyapatite with combined osteogenic and antibacterial activities. Biol Trace Elem Res. 2022;200(2):931–942. doi:10.1007/s12011-021-02697-z
  • Kazemzadeh-Narbat M, Cheng H, Chabok R, et al. Strategies for antimicrobial peptide coatings on medical devices: A review and regulatory science perspective. Crit Rev Biotechnol. 2020;41(1):94–120. doi:10.1080/07388551.2020.1828810
  • Sun D, Shahzad MB, Li M, Wang G, Xu D. Antimicrobial materials with medical applications. Mater Technol. 2014;30(sup6):B90–95. doi:10.1179/1753555714Y.0000000239
  • Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance toward chlorhexidine in oral bacteria – is there cause for concern? Front Microbiol. 2019;10:587. doi:10.3389/fmicb.2019.00587
  • Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Update. 2016;26:43–57. doi:10.1016/j.drup.2016.04.002
  • Endersen L, O’Mahony J, Hill C, Ross RP, McAuliffe O, Coffey A. Phage therapy in the food industry. Annu Rev Food Sci Technol. 2014;5(1):327–349. doi:10.1146/annurev-food-030713-092415
  • Batinovic S, Wassef F, Knowler SA, et al. Bacteriophages in natural and artificial environments. Pathogens. 2019;8(3):100. doi:10.3390/pathogens8030100
  • Cerveny KE, DePaola A, Duckworth DH, Gulig PA. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect Immun. 2002;70(11):6251–6262. doi:10.1128/IAI.70.11.6251-6262.2002
  • Guo Z, Lin H, Ji X, et al. Therapeutic applications of lytic phages in human medicine. Microb Pathog. 2020;142:104048. doi:10.1016/j.micpath.2020.104048
  • Amankwah S, Abdusemed K, Kassa T. Bacterial biofilm destruction: A focused review on the recent use of phage-based strategies with other antibiofilm agents. Nanotechnol Sci Appl. 2021;14:161–177. doi:10.2147/NSA.S325594
  • Oliveira VC, Bim FL, Monteiro RM, et al. Identification and characterization of new bacteriophages to control multidrug-resistant Pseudomonas aeruginosa biofilm on endotracheal tubes. Front Microbiol. 2020;11:580779. doi:10.3389/fmicb.2020.580779
  • Oliveira VC, Macedo AP, Melo LDR, et al. Bacteriophage cocktail-mediated inhibition of Pseudomonas aeruginosa biofilm on endotracheal tube surface. Antibiotics. 2021;10(1):78. doi:10.3390/antibiotics10010078
  • Topka-Bielecka G, Nejman-Faleńczyk B, Bloch S, et al. Phage-bacteria interactions in potential applications of bacteriophage vB_EfaS-271 against Enterococcus faecalis. Viruses. 2021;13(2):318. doi:10.3390/v13020318
  • Van TR, Kropinski AM. Bacteriophage enrichment from water and soil. In: Clokie MRJ, Kropinski AM editors. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. Humana Press; Vol. 501, 2009:15–21. doi:10.1007/978-1-60327-164-6
  • Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press; 2001.
  • Azeredo J, Sillankorva S, Pires DP. Pseudomonas bacteriophage isolation and production. In: Filloux A, Ramos J-L editors. Pseudomonas Methods and Protocols. Springer; Vol. 1149, 2014:23–32. doi:10.1007/978-1-4939-0473-0
  • Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B, et al. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Sci Rep. 2016;6(1):34338. doi:10.1038/srep34338
  • Gudina I, Gizachew Z, Woyessa D, Tefera TK. Isolation of bacteriophage and assessment of its activity against biofilms of uropathogenic Escherichia coli in Jimma town, South-western Ethiopia. Am J Curr Microbiol. 2018;6(1):52–66.
  • Clokie MRJ, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage. 2011;1(1):31–45. doi:10.4161/bact.1.1.14942
  • Abedon ST, Danis-Wlodarczyk KM, Wozniak DJ. Phage cocktail development for bacteriophage Therapy: Toward improving spectrum of activity breadth and depth. Pharmaceuticals. 2021;14(10):1019. doi:10.3390/ph14101019
  • Topka-Bielecka G, Bloch S, Nejman-Faleńczyk B, et al. Characterization of the bacteriophage vB_EfaS-271 infecting Enterococcus faecalis. Int J Mol Sci. 2020;21(17):6345. doi:10.3390/ijms21176345
  • Guo Y, Chen P, Lin Z, Wang T. Characterization of two Pseudomonas aeruginosa viruses vB_PaeM_SCUT-S1 and vB_PaeM_SCUT-S2. Viruses. 2019;11(4):318. doi:10.3390/v11040318
  • Mäntynen S, Sundberg L-R, Oksanen H, Poranen M. Half a century of research on membrane-containing bacteriophages: bringing new concepts to modern virology. Viruses. 2019;11(1):76. doi:10.3390/v11010076
  • Wei H, Cheng RH, Berriman J, et al. Three-dimensional structure of the enveloped bacteriophage Φ12: An incomplete T = 13 lattice is superposed on an enclosed T = 1 shell. PLoS One. 2009;4(9):e6850. doi:10.1371/journal.pone.0006850
  • Abdulhaq N, Nawaz Z, Zahoor MA, Siddique AB. Association of biofilm formation with multidrug resistance in clinical isolates of Pseudomonas aeruginosa. EXCLI J. 2020;19:201–208. doi:10.17179/excli2019-2049
  • Heidari R, Farajzadeh Sheikh A, Hashemzadeh M, Farshadzadeh Z, Salmanzadeh S, Saki M. Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Mol Biol Rep. 2022;(0123456789). doi:10.1007/s11033-022-07225-3
  • Thees AV, Pietrosimone KM, Melchiorre CK, et al. PmtA regulates pyocyanin expression and biofilm formation in Pseudomonas aeruginosa. Front Microbiol. 2021;12:789765. doi:10.3389/fmicb.2021.789765
  • Gajdács M, Baráth Z, Kárpáti K, et al. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: Results from a laboratory-based in vitro study. Antibiotics. 2021;10(9):1–16. doi:10.3390/antibiotics10091134
  • Pallavali RR, Degati VL, Narala VR, Velpula KK, Yenugu S, Durbaka VRP. Lytic bacteriophages against bacterial biofilms formed by multidrug-resistant Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus isolated from burn wounds. PHAGE. 2021;2(3):120–130. doi:10.1089/phage.2021.0004
  • Melo LDR, Veiga P, Cerca N, et al. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front Microbiol. 2016;7:1024. doi:10.3389/fmicb.2016.01024
  • Kauppinen A, Siponen S, Pitkänen T, et al. Phage biocontrol of Pseudomonas aeruginosa in water. Viruses. 2021;13(5):928. doi:10.3390/v13050928
  • Stachler E, Kull A, Julian TR. Bacteriophage treatment before chemical disinfection can enhance removal of plastic-surface-associated Pseudomonas aeruginosa. Appl Environ Microbiol. 2021;87:20. doi:10.1128/AEM.00980-21