374
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Proteomics Combined with RNA Sequencing to Screen Biomarkers of Sepsis

ORCID Icon, , , &
Pages 5575-5587 | Received 26 Jun 2022, Accepted 10 Sep 2022, Published online: 21 Sep 2022

References

  • Eisenberg MA, Balamuth F. Pediatric sepsis screening in US hospitals. Pediatr Res. 2022;91(2):351–358.
  • Alba-Patiño A, Vaquer A, Barón E, et al. Micro- and nanosensors for detecting blood pathogens and biomarkers at different points of sepsis care. Mikrochim Acta. 2022;189(2):74.
  • Chen J, Wei H. Immune intervention in sepsis. Front Pharmacol. 2021;12:718089.
  • Rimmelé T, Payen D, Cantaluppi V, et al. Immune cell phenotype and function in sepsis. Shock. 2016;45(3):282–291.
  • Heming N, Azabou E, Cazaumayou X, et al. Sepsis in the critically ill patient: current and emerging management strategies. Expert Rev Anti Infect Ther. 2021;19(5):635–647.
  • Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. 2017;8(1):e1364.
  • Shi H, Zhou Y, Jia E, et al. Bias in RNA-seq library preparation: current challenges and solutions. Biomed Res Int. 2021;2021:6647597.
  • Yip SH, Sham PC, Wang J. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data. Brief Bioinform. 2019;20(4):1583–1589.
  • Chen G, Ning B, Shi T. Single-cell RNA-seq technologies and related computational data analysis. Front Genet. 2019;10:317.
  • Li J, Smith LS, Zhu HJ. Data-independent acquisition (DIA): an emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters. Drug Discov Today Technol. 2021;39:49–56.
  • Yang Y, Lin L, Qiao L. Deep learning approaches for data-independent acquisition proteomics. Expert Rev Proteomics. 2021;18(12):1031–1043.
  • Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinform. 2018;19(1):534.
  • Von Mering C, Jensen LJ, Snel B, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–D437.
  • Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–2629.
  • Sutherland A, Thomas M, Brandon RA, et al. Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis. Crit Care. 2011;15(3):R149.
  • Parnell GP, Tang BM, Nalos M, et al. Identifying key regulatory genes in the whole blood of septic patients to monitor underlying immune dysfunctions. Shock. 2013;40(3):166–174.
  • Vieira Da Silva Pellegrina D, Severino P, Vieira BH, et al. Septic shock in advanced age: transcriptome analysis reveals altered molecular signatures in neutrophil granulocytes. PLoS One. 2015;10(6):e0128341.
  • Pankla R, Buddhisa S, Berry M, et al. Genomic transcriptional profiling identifies a candidate blood biomarker signature for the diagnosis of septicemic melioidosis. Genome Biol. 2009;10(11):R127.
  • Venet F, Schilling J, Cazalis MA, et al. Modulation of LILRB2 protein and mRNA expressions in septic shock patients and after ex vivo lipopolysaccharide stimulation. Hum Immunol. 2017;78(5–6):441–450.
  • Vuckovic D, Gasparini P, Soranzo N, et al. MultiMeta: an R package for meta-analyzing multi-phenotype genome-wide association studies. Bioinformatics. 2015;31(16):2754–2756.
  • Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20(2):163–172.
  • Wang LK, Yue HL, Peng XJ, et al. GSTO1 regards as a meritorious regulator in cutaneous malignant melanoma cells. Mol Cell Probes. 2019;48:101449.
  • Tsuboi K, Bachovchin DA, Speers AE, et al. Optimization and characterization of an inhibitor for glutathione S-transferase; 2010.
  • Radic T, Coric V, Bukumiric Z, et al. GSTO1*CC Genotype (rs4925) predicts shorter survival in clear cell renal cell carcinoma male patients. Cancers. 2019;11:12.
  • Bruiners N, Schurz H, Daya M, et al. A regulatory variant in the C1Q gene cluster is associated with tuberculosis susceptibility and C1qA plasma levels in a South African population. Immunogenetics. 2020;72(5):305–314.
  • Graham LC, Kocalis HE, Soto I, et al. Deficiency of complement component C1Q prevents cerebrovascular damage and white matter loss in a mouse model of chronic obesity. eNeuro. 2020;3. doi:10.1523/ENEURO.0057-20.2020.
  • Azzato EM, Lee AJ, Teschendorff A, et al. Common germ-line polymorphism of C1QA and breast cancer survival. Br J Cancer. 2010;102(8):1294–1299.
  • Nowacka-Woszuk J, Pruszynska-Oszmalek E, Szydlowski M, et al. Diet-induced variability of the resistin gene (Retn) transcript level and methylation profile in rats. BMC Genet. 2015;16:113.
  • Zhang Y, Wang Y, Xu Q, et al. Molecular and expression characteristics of resistin (RETN) and its effects on the differentiation of intramuscular preadipocyte in goat. Anim Biotechnol. 2021;32(1):113–120.
  • Wang CQ, Tang CH, Tzeng HE, et al. Impacts of RETN genetic polymorphism on breast cancer development. J Cancer. 2020;11(10):2769–2777.
  • Rhinn H, Tatton N, Mccaughey S, et al. Progranulin as a therapeutic target in neurodegenerative diseases. Trends Pharmacol Sci. 2022;43:641–652.
  • Terryn J, Verfaillie CM, Van Damme P. Tweaking progranulin expression: therapeutic avenues and opportunities. Front Mol Neurosci. 2021;14:713031.
  • Sleegers K, Brouwers N, Van Broeckhoven C. Role of progranulin as a biomarker for Alzheimer’s disease. Biomark Med. 2010;4(1):37–50.