675
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review

, & ORCID Icon
Pages 7631-7650 | Received 17 Aug 2022, Accepted 29 Nov 2022, Published online: 22 Dec 2022

References

  • Li S, Duan X, Peng Y, Rui Y. Molecular characteristics of carbapenem-resistant Acinetobacter spp. from clinical infection samples and fecal survey samples in Southern China. BMC Infect Dis. 2019;19(1):1–12. doi:10.1186/s12879-019-4423-3
  • Barker J, Maxted H. Observations on the growth and movement of Acinetobacter on semi-solid media. J Med Microbiol. 1975;8(3):443–446. doi:10.1099/00222615-8-3-443
  • Gupta N, Gandham N, Jadhav S, Mishra RN. Isolation and identification of Acinetobacter species with special reference to antibiotic resistance. J Nat Sci Biol Med. 2015;6(1):159–162. doi:10.4103/0976-9668.149116
  • Hamidian M, Nigro SJ. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb Genom. 2019;5(10). doi:10.1099/mgen.0.000306
  • Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: transforming Acinetobacter baumannii into a yet more dangerous menace. Biomolecules. 2020;10(5):720. doi:10.3390/biom10050720
  • Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol. 2018;16(2):91–102. doi:10.1038/nrmicro.2017.148
  • Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2007;51(10):3471–3484. doi:10.1128/AAC.01464-06
  • Mezzatesta ML, D’Andrea MM, Migliavacca R, et al. Epidemiological characterization and distribution of carbapenem-resistant Acinetobacter baumannii clinical isolates in Italy. Clin Microbiol Infect. 2012;18(2):160–166. doi:10.1111/j.1469-0691.2011.03527.x
  • Zhanel GG, Wiebe R, Dilay L, et al. Comparative review of the carbapenems. Drugs. 2007;67(7):1027–1052. doi:10.2165/00003495-200767070-00006
  • Codjoe FS, Donkor ES. Carbapenem resistance: a review. Med Sci. 2017;6(1):1. doi:10.3390/medsci6010001
  • Manchanda V, Sanchaita S, Singh NP. Multidrug resistant Acinetobacter. J Glob Infect Dis. 2010;2(3):291–304. doi:10.4103/0974-777X.68538
  • Said D, Willrich N, Ayobami O, Noll I, Eckmanns T, Markwart R. The epidemiology of carbapenem resistance in Acinetobacter baumannii complex in Germany (2014–2018): an analysis of data from the national Antimicrobial Resistance Surveillance system. Antimicrob Resist Infect Control. 2021;10(1):1–13. doi:10.1186/s13756-021-00909-8
  • Vashist J, Tiwari V, Das R, Kapil A, Rajeswari MR. Analysis of penicillin-binding proteins (PBPs) in carbapenem resistant Acinetobacter baumannii. Indian J Med Res. 2011;133(3):332.
  • Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future Sci. 2020;6(3):FSO438. doi:10.2144/fsoa-2019-0098
  • Abouelfetouh A, Torky AS, Aboulmagd E. Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt. Antimicrob Resist Infect Control. 2019;8:185. doi:10.1186/s13756-019-0611-6
  • Handal R, Qunibi L, Sahouri I, et al. Characterization of carbapenem-resistant Acinetobacter baumannii strains isolated from hospitalized patients in Palestine. Int J Microbiol. 2017;2017. doi:10.1155/2017/8012104
  • Karthikeyan K, Thirunarayan MA, Krishnan P. Coexistence of bla OXA-23 with bla NDM-1 and armA in clinical isolates of Acinetobacter baumannii from India. J Antimicrob Chemother. 2010;65(10):2253–2254. doi:10.1093/jac/dkq273
  • Suresh A, Ranjan A, Jadhav S, et al. Molecular genetic and functional analysis of pks-harboring, extra-intestinal pathogenic Escherichia coli from India. Front Microbiol. 2018;9:2631. doi:10.3389/fmicb.2018.02631
  • Ranjan A, Shaik S, Nandanwar N, et al. Comparative genomics of Escherichia coli isolated from skin and soft tissue and other extraintestinal infections. mBio. 2017;8:e01070–17. doi:10.1128/mBio.01070-17
  • Shaik S, Ranjan A, Tiwari SK, et al. Comparative genomic analysis of globally dominant ST131 clone with other epidemiologically successful extraintestinal pathogenic Escherichia coli (ExPEC) lineages. mBio. 2017;8:e01596–17. doi:10.1128/mBio.01596-17
  • Mirza S, Savita jadhav RN, Das NK. Coexistence of β-lactamases in community-acquired infections in a tertiary care hospital in India. Int J Microbiol. 2019;2019:5. doi:10.1155/2019/7019578
  • Avasthi TS, Kumar N, Baddam R, et al. Genome of multidrug-resistant uropathogenic Escherichia coli strain NA114 from India. J Bacteriol. 2011;193(16):4272–4273. doi:10.1128/JB.05413-11
  • Jadhav S, Hussain A, Devi S, et al. Virulence characteristics and genetic affinities of multiple drug resistant uropathogenic Escherichia coli from a semi Urban locality in India. PLoS One. 2011;6(3):e18063. doi:10.1371/journal.pone.0018063
  • Nguyen AT, Pham SC, Ly AK, Nguyen CV, Vu TT, Ha TM. Overexpression of bla OXA-58 gene driven by IS Aba3 Is associated with imipenem resistance in a clinical Acinetobacter baumannii isolate from Vietnam. Biomed Res Int. 2020;2020:1–9. doi:10.1155/2020/7213429
  • Fernández-Cuenca F, Martínez-Martínez L, Conejo MC, Ayala JA, Perea EJ, Pascual A. Relationship between β-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J Antimicrob Chemother. 2003;51(3):565–574. doi:10.1093/jac/dkg097
  • Gehrlein M, Leying H, Cullmann W, Wendt S, Opferkuch W. Imipenem resistance in Acinetobacter baumannii is due to altered penicillin-binding proteins. Chemotherapy. 1991;37(6):405–412. doi:10.1159/000238887
  • Uppalapati SR, Sett A, Pathania R. The outer membrane proteins OmpA, CarO, and OprD of Acinetobacter baumannii confer a two-pronged defense in facilitating its success as a potent human pathogen. Front Microbiol. 2020;11:589234. doi:10.3389/fmicb.2020.589234
  • Vrancianu CO, Gheorghe I, Czobor IB, Chifiriuc MC. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms. 2020;8(6):935. doi:10.3390/microorganisms8060935
  • Nguyen M, Joshi SG. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital‐acquired infections: a scientific review. J Appl Microbiol. 2021;131(6):2715–2738. doi:10.1111/jam.15130
  • Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 2006;43(Supplement_2):S49–S56. doi:10.1086/504477
  • Vrancianu CO, Pelcaru CF, Alistar A, et al. Escaping from ESKAPE. Clinical significance and antibiotic resistance mechanisms in Acinetobacter baumannii: a review. Biointerface Res Appl Chem. 2021;11(1):8190–8203.
  • Ju Y, Kim YJ, Chang CL, Choi GE, Hyun KY. Relationship between AdeABC Efflux pump genes and carbapenem in multidrug-resistant Acinetobacter baumannii. Biomed Sci Lett. 2021;27(2):59–68. doi:10.15616/BSL.2021.27.2.59
  • Zhang Y, Li Z, He X, et al. Overproduction of efflux pumps caused reduced susceptibility to carbapenem under consecutive imipenem-selected stress in Acinetobacter baumannii. Infect Drug Resist. 2017;11:457–467. doi:10.2147/IDR.S151423
  • Xu CF, Bilya SR, Xu W. adeABC efflux gene in Acinetobacter baumannii. New Microbes New Infect. 2019;30:100549. doi:10.1016/j.nmni.2019.100549
  • Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens. 2021;10(3):373. doi:10.3390/pathogens10030373
  • Ranjan A, Shaik S, Mondal A, et al. Molecular epidemiology and genome dynamics of New Delhi metallo-β-lactamase-producing extraintestinal pathogenic Escherichia coli strains from India. Antimicrob Agents Chemother. 2016;60:6795–6805. doi:10.1128/AAC.01345-16
  • Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014;20(9):831–838. doi:10.1111/1469-0691.12655
  • Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006;12(9):826–836. doi:10.1111/j.1469-0691.2006.01456
  • Pagano M, Martins AF, Barth AL. Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii. Braz J Microbiol. 2016;47:785–792. doi:10.1016/j.bjm.2016.06.005
  • Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–976. doi:10.1128/AAC.01009-09
  • Djahmi N, Dunyach-Remy C, Pantel A, Dekhil M, Sotto A, Lavigne JP. Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean countries. Biomed Res Int. 2014;2014:1–11. doi:10.1155/2014/305784
  • Ibrahim ME. Prevalence of Acinetobacter baumannii in Saudi Arabia: risk factors, antimicrobial resistance patterns and mechanisms of carbapenem resistance. Ann Clin Microbiol Antimicrob. 2019;18(1):1–12. doi:10.1186/s12941-018-0301-x
  • Evans BA, Amyes SG. OXA β-lactamases. Clin Microbiol Rev. 2014;27(2):241–263. doi:10.1128/CMR.00117-13
  • Goudarzi H, Azad M, Seyedjavadi SS, et al. Characterization of integrons and associated gene cassettes in Acinetobacter baumannii strains isolated from intensive care unit in Tehran, Iran. J Acute Dis. 2016;5(5):386–392. doi:10.1016/j.joad.2016.08.004
  • Suresh A, Shaik S, Baddam R, et al. Evolutionary dynamics based on comparative genomics of pathogenic Escherichia coli lineages harbouring polyketide synthase (pks) island. mBio. 2021;12:e03634–20. doi:10.1128/mBio.03634-20
  • Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol. 2017;43(6):709–730. doi:10.1080/1040841X.2017.1303661
  • Wu W, He Y, Lu J, Lu Y, Wu J, Liu Y. Transition of bla OXA-58-like to bla OXA-23-like in Acinetobacter baumannii clinical isolates in southern China: an 8-year study. PLoS One. 2015;10(9):e0137174. doi:10.1371/journal.pone.0137174
  • Segal H, Garny S, Elisha BG. Is IS ABA-1 customized for Acinetobacter? FEMS Microbiol Lett. 2005;243(2):425–429. doi:10.1016/j.femsle.2005.01.005
  • Corvec S, Poirel L, Naas T, Drugeon H, Nordmann P. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-23 in Acinetobacter baumannii. Antimicrob Agents Chemother. 2007;51(4):1530–1533. doi:10.1128/AAC.01132-06
  • Bahador A, Raoofian R, Farshadzadeh Z, et al. The prevalence of ISAba1 and ISAba4 in Acinetobacter baumannii species of different international clone lineages among patients with burning in Tehran, Iran. Jundishapur J Microbiol. 2015;8(7). doi:10.5812/jjm.17167v2
  • Ravasi P, Limansky AS, Rodriguez RE, Viale AM, Mussi MA. ISAba825, a functional insertion sequence modulating genomic plasticity and bla OXA-58 expression in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(2):917–920. doi:10.1128/AAC.00491-10
  • Lee Y, Kim CK, Lee H, Jeong SH, Yong D, Lee K. A novel insertion sequence, IS Aba10, inserted into IS Aba1 adjacent to the bla OXA-23 gene and disrupting the outer membrane protein gene carO in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(1):361–363. doi:10.1128/AAC.01672-09
  • Mussi MA, Limansky AS, Viale AM. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. Antimicrob Agents Chemother. 2005;49(4):1432–1440. doi:10.1128/AAC.49.4.1432-1440.2005
  • Pfeifer Y, Wilharm G, Zander E, et al. Molecular characterization of bla NDM-1 in an Acinetobacter baumannii strain isolated in Germany in 2007. J Antimicrob Chemother. 2011;66(9):1998–2001. doi:10.1093/jac/dkr256
  • Bontron S, Nordmann P, Poirel L. Transposition of Tn 125 encoding the NDM-1 carbapenemase in Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(12):7245–7251. doi:10.1128/AAC.01755-16
  • Vijayakumar S, Wattal C, Oberoi JK, et al. Insights into the complete genomes of carbapenem-resistant Acinetobacter baumannii harbouring bla OXA-23, bla OXA-420 and bla NDM-1 genes using a hybrid-assembly approach. Access Microbiol. 2020;2:8. doi:10.1099/acmi.0.000140
  • Vijayakumar S, Anandan S, Prabaa D, et al. Insertion sequences and sequence types profile of clinical isolates of carbapenem-resistant A. baumannii collected across India over four year period. J Infect Public Health. 2020;13(7):1022–1028. doi:10.1016/j.jiph.2019.11.018
  • Jones LS, Toleman MA, Weeks JL, Howe RA, Walsh TR, Kumarasamy KK. Plasmid carriage of bla NDM-1 in clinical Acinetobacter baumannii isolates from India. Antimicrob Agents Chemother. 2014;58(7):4211–4213. doi:10.1128/AAC.02500-14
  • Chen Y, Gao J, Zhang H, Ying C. Spread of the blaOXA–23-containing Tn 2008 in carbapenem-resistant Acinetobacter baumannii isolates grouped in CC92 from China. Front Microbiol. 2017;8:163. doi:10.3389/fmicb.2017.00163
  • Nigro SJ, Hall RM. Structure and context of Acinetobacter transposons carrying the oxa23 carbapenemase gene. J Antimicrob Chemother. 2016;71(5):1135–1147. doi:10.1093/jac/dkv440
  • Yoon EJ, Kim JO, Yang JW, et al. The bla OXA-23-associated transposons in the genome of Acinetobacter spp. represent an epidemiological situation of the species encountering carbapenems. J Antimicrob Chemother. 2017;72(10):2708–2714. doi:10.1093/jac/dkx205
  • Mann R, Rafei R, Gunawan C, Harmer CJ, Hamidian M. Variants of Tn 6924, a novel Tn 7 family transposon carrying the bla NDM Metallo-β-Lactamase and 14 Copies of the aphA6 amikacin resistance genes found in Acinetobacter baumannii. Microbiol Spectr. 2022;10(1):e01745–21. doi:10.1128/spectrum.01745-21
  • Deylam Salehi M, Ferdosi-Shahandashti E, Yahyapour Y, Khafri S, Pournajaf A, Rajabnia R. Integron-mediated antibiotic resistance in Acinetobacter baumannii isolated from intensive care unit patients, Babol, North of Iran. Biomed Res Int. 2017;2017:1–8. doi:10.1155/2017/7157923
  • Nikibakhsh M, Firoozeh F, Badmasti F, Kabir K, Zibaei M. Molecular study of metallo-β-lactamases and integrons in Acinetobacter baumannii isolates from burn patients. BMC Infect Dis. 2021;21(1):1–6. doi:10.1186/s12879-021-06513
  • Amin M, Navidifar T, Shooshtari FS, Goodarzi H. Association of the genes encoding metallo-β-lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii. Infect Drug Resist. 2019;12:1171–1180. doi:10.2147/IDR.S196575
  • Yum JH. High prevalence and genotypic characterization of metallo-β-lactamase (MBL)-producing Acinetobacter spp. isolates disseminated in a Korean Hospital. Korean J Clin Lab Sci. 2019;51(4):444–452. doi:10.15324/kjcls.2019.51.4.444
  • Halaji M, Rezaei A, Zalipoor M, Faghri J. Investigation of class I, II, and III integrons among Acinetobacter Baumannii isolates from hospitalized patients in Isfahan, Iran. Oman Med J. 2018;33(1):37–42. doi:10.5001/omj.2018.07
  • Kalal BS, Chandran SP, Yoganand R, Nagaraj S. Molecular characterization of carbapenem-resistant Acinetobacter baumannii strains from a tertiary care center in South India. Infectio. 2020;24(1):27–34. doi:10.22354/in.v24i1.824
  • Aruhomukama D, Najjuka CF, Kajumbula H, et al. blaVIM-and blaOXA-mediated carbapenem resistance among Acinetobacter baumannii and Pseudomonas aeruginosa isolates from the Mulago Hospital intensive care unit in Kampala, Uganda. BMC Infect Dis. 2019;19(1):1–8. doi:10.1186/s12879-019-4510-5
  • Sung JY, Koo SH, Cho HH, Kwon KC. AbaR7, a genomic resistance island found in multidrug-resistant Acinetobacter baumannii isolates in Daejeon, Korea. Ann Lab Med. 2012;32(5):324–330. doi:10.3343/alm.2012.32.5.324
  • Fournier PE, Vallenet D, Barbe V, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006;2(1):e7. doi:10.1371/journal.pgen.0020007
  • Nowak P, Paluchowska P. Acinetobacter baumannii: biology and drug resistance—role of carbapenemases. Folia Histochemica Et Cytobiologica. 2016;54(2):61–74. doi:10.5603/FHC.a2016.0009
  • Bi D, Xie R, Zheng J, et al. Large-scale identification of AbaR-type genomic islands in Acinetobacter baumannii reveals diverse insertion sites and clonal lineage-specific antimicrobial resistance gene profiles. Antimicrob Agents Chemother. 2019;63(4):e02526–18. doi:10.1128/AAC.02526-18
  • Bi D, Zheng J, Xie R, et al. Comparative analysis of AbaR-type genomic islands reveals distinct patterns of genetic features in elements with different backbones. Msphere. 2020;5(3):e00349–20. doi:10.1128/mSphere.00349-20
  • Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9(2):148–165. doi:10.1128/CMR.9.2.148
  • Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20(3):440–458. doi:10.1128/CMR.00001-07
  • Paton R, Miles RS, Hood J, Amyes SGB. ARI 1: β-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents. 1993;2(2):81–87. doi:10.1016/0924-8579(93
  • Zarrilli R, Pournaras S, Giannouli M, Tsakris A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents. 2013;41(1):11–19. doi:10.1016/j.ijantimicag.2012.09.008
  • Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2001;45(2):583–588. doi:10.1128/AAC.45.2.583-588.2001
  • Brown S, Amyes S. OXA β-lactamases in Acinetobacter: the story so far. J Antimicrob Chemother. 2006;57(1):1–3. doi:10.1093/jac/dki425
  • Yang Z, Wang P, Song P, Li X. Carbapenemase OXA-423: a Novel OXA-23 Variant in Acinetobacter baumannii. Infect Drug Resist. 2020;13:4069–4075. doi:10.2147/IDR.S277364
  • Singh M, De Silva PM, Al-Saadi Y, et al. Characterization of extremely drug-resistant and hypervirulent Acinetobacter baumannii AB030. Antibiotics. 2020;9(6):328. doi:10.3390/antibiotics9060328
  • Wang Z, Li H, Zhang J, Wang H. Co-Occurrence of bla OXA-23 in the chromosome and plasmid: increased fitness in carbapenem-resistant Acinetobacter baumannii. Antibiotics. 2021;10(10):1196. doi:10.3390/antibiotics10101196
  • Brown S, Young HK, Amyes SGB. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin Microbiol Infect. 2005;11(1):15–23. doi:10.1111/j.1469-0691.2004.01016.x
  • Rodríguez CH, Nastro M, Famiglietti A. Carbapenemases in Acinetobacter baumannii. Review of their dissemination in Latin America. Revista Argentina de Microbiología. 2018;50(3):327–333. doi:10.1016/j.ram.2017.10.006
  • Lee YT, Kuo SC, Chiang MC, et al. Emergence of carbapenem-resistant non-baumannii species of Acinetobacter harboring a bla OXA-51-like gene that is intrinsic to A baumannii. Antimicrob Agents Chemother. 2012;56(2):1124–1127. doi:10.1128/AAC.00622-11
  • Leski TA, Bangura U, Jimmy DH, et al. Identification of bla OXA-51-like, bla OXA-58, bla DIM-1, and bla VIM carbapenemase genes in hospital Enterobacteriaceae isolates from Sierra Leone. J Clin Microbiol. 2013;51(7):2435–2438. doi:10.1128/JCM.00832-13
  • Bou G, Oliver A, Martínez-Beltrán J. OXA-24, a novel class D β-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother. 2000;44(6):1556–1561. doi:10.1128/AAC.44.6.1556-1561.2000
  • Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother. 2010;54(1):24–38. doi:10.1128/AAC.01512-08
  • Lu PL, Doumith M, Livermore DM, Chen TP, Woodford N. Diversity of carbapenem resistance mechanisms in Acinetobacter baumannii from a Taiwan Hospital: spread of plasmid-borne OXA-72 carbapenemase. J Antimicrob Chemother. 2009;63(4):641–647. doi:10.1093/jac/dkn553
  • Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G, Nordmann P. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49(1):202–208. doi:10.1128/AAC.49.1.202-208.2005
  • Merkier AK, Catalano M, Ramírez MS, et al. Polyclonal spread of blaOXA-23 and blaOXA-58 in Acinetobacter baumannii isolates from Argentina. J Infect Dev Ctries. 2008;2(03):235–240. doi:10.3855/jidc.269
  • Poirel L, Mansour W, Bouallegue O, Nordmann P. Carbapenem-resistant Acinetobacter baumannii isolates from Tunisia producing the OXA-58-like carbapenem-hydrolyzing oxacillinase OXA-97. Antimicrob Agents Chemother. 2008;52(5):1613–1617. doi:10.1128/AAC.00978-07
  • Sevillano E, Fernandez E, Bustamante Z, et al. Emergence and clonal dissemination of carbapenem-hydrolysing OXA-58-producing Acinetobacter baumannii isolates in Bolivia. J Med Microbiol. 2012;61(1):80–84. doi:10.1099/jmm.0.032722-0
  • Bertini A, Poirel L, Bernabeu S, et al. Multicopy bla OXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother. 2007;51(7):2324–2328. doi:10.1128/AAC.01502-06
  • Héritier C, Dubouix A, Poirel L, Marty N, Nordmann P. A nosocomial outbreak of Acinetobacter baumannii isolates expressing the carbapenem-hydrolysing oxacillinase OXA-58. J Antimicrob Chemother. 2005;55(1):115–118. doi:10.1093/jac/dkh500
  • Higgins PG, Poirel L, Lehmann M, Nordmann P, Seifert H. OXA-143, a novel carbapenem-hydrolyzing class D β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(12):5035–5038. doi:10.1128/AAC.00856-09
  • Gionco B, Pelayo JS, Venancio EJ, Cayô R, Gales AC, Carrara-Marroni FE. Detection of OXA-231, a new variant of bla OXA-143, in Acinetobacter baumannii from Brazil: a case report. J Antimicrob Chemother. 2012;67(10):2531–2532. doi:10.1093/jac/dks223
  • Higgins PG, Pérez-Llarena FJ, Zander E, Fernández A, Bou G, Seifert H. OXA-235, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57(5):2121–2126. doi:10.1128/AAC.02413-12
  • Goncalves D, Cecilio P, Ferreira H. First detection of OXA-48-like producing Acinetobacter baumannii in the faecal flora of nursing home residents in Northern Portugal. In: Twenty-Third European Congress of Clinical Microbiology and Infectious Diseases. Berlin, Germany: European Congress; 2013.
  • Tognim MC, Gales AC, Penteado AP, Silbert S, Sader HS. Dissemination of IMP-1 metallo-β-lactamase–producing Acinetobacter species in a Brazilian teaching hospital. Infect Control Hosp Epidemiol. 2006;27(7):742–747. doi:10.1086/504356
  • Riccio ML, Franceschini N, Boschi L, et al. Characterization of the metallo-β-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla IMP allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother. 2000;44(5):1229–1235. doi:10.1128/AAC.44.5.1229-1235
  • Chu YW, Afzal-Shah M, Houang ET, et al. IMP-4, a novel metallo-β-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. Antimicrob Agents Chemother. 2001;45(3):710–714. doi:10.1128/AAC.45.3.710-714.2001
  • Da Silva GJ, Correia M, Vital C, et al. Molecular characterization of bla IMP-5, a new integron-borne metallo-β-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. FEMS Microbiol Lett. 2002;215(1):33–39. doi:10.1016/S0378-1097(02)00896-0
  • Gales AC, Tognim MC, Reis AO, Jones RN. Emergence of an IMP-like metallo-enzyme in an Acinetobacter baumannii clinical strain from a Brazilian teaching hospital. Diagn Microbiol Infect Dis. 2003;45(1):77–79. doi:10.1016/s0732-8893(02)00500-x
  • Wang H, Guo P, Sun H, et al. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother. 2007;51(11):4022–4028. doi:10.1128/AAC.01259-06
  • Cayô R, Rodrigues-Costa F, Matos AP, Carvalhaes CG, Jové T, Gales AC. Identification of a new integron harboring bla IMP-10 in carbapenem-resistant Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother. 2015;59(6):3687–3689. doi:10.1128/AAC.04991-14
  • Yamamoto M, Nagao M, Matsumura Y, et al. Interspecies dissemination of a novel class 1 integron carrying bla IMP-19 among Acinetobacter species in Japan. J Antimicrob Chemother. 2011;66(11):2480–2483. doi:10.1093/jac/dkr336
  • Azizi O, Shakibaie MR, Badmasti F, et al. Class 1 integrons in non-clonal multidrug-resistant Acinetobacter baumannii from Iran, description of the new blaIMP-55 allele in In1243. J Med Microbiol. 2016;65(9):928–936. doi:10.1099/jmm.0.000315
  • Yum JH, Yi K, Lee H, et al. Molecular characterization of metallo-b-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the bla VIM-2 gene cassettes. J Antimicrob Chemother. 2002;49(5):837–840. doi:10.1093/jac/dkf043
  • Tsakris A, Ikonomidis A, Pournaras S, et al. VIM-1 metallo-β-lactamase in Acinetobacter baumannii. Emerg Infect Dis. 2006;12(6):981–983. doi:10.3201/eid1206.051097
  • Figueiredo S, Poirel L, Papa A, Koulourida V, Nordmann P. First identification of VIM-4 metallo-β-lactamase in Acinetobacter spp. Clin Microbiol Infect. 2008;14(3):289–290. doi:10.1111/j.1469-0691.2007.01942.x
  • Lee MF, Peng CF, Hsu HJ, Chen YH. Molecular characterisation of the metallo-β-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. Int J Antimicrob Agents. 2008;32(6):475–480. doi:10.1016/j.ijantimicag.2008.07.009
  • Lee K, Yum JH, Yong D, et al. Novel acquired metallo-β-lactamase gene, bla SIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother. 2005;49(11):4485–4491. doi:10.1128/AAC.49.11.4485-4491.2005
  • Kaase M, Nordmann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J Antimicrob Chemother. 2011;66(6):1260–1262. doi:10.1093/jac/dkr135
  • Kumar M. Identification of a novel NDM variant, blaNDM-3, from a multidrug-resistant Acinetobacter baumannii. Infect Control Hosp Epidemiol. 2016;37(6):747–748. doi:10.1017/ice.2016.66
  • Xanthopoulou K, Urrutikoetxea-Gutiérrez M, Vidal-Garcia M, et al. First report of New Delhi Metallo-β-Lactamase-6 (NDM-6) in a clinical Acinetobacter baumannii isolate from Northern Spain. Front Microbiol. 2020;11:589253. doi:10.3389/fmicb.2020.589253
  • Shahcheraghi F, Abbasalipour M, Feizabadi MM, Ebrahimipour GH, Akbari N. Isolation and genetic characterization of metallo-β-lactamase and carbapenemase producing strains of Acinetobacter baumannii from patients at Tehran hospitals. Iran J Microbiol. 2011;3(2):68.
  • Mohamed NM, Raafat D. Phenotypic and genotypic detection of metallo-beta-lactamases in imipenem-resistant Acinetobacter baumannii isolated from a tertiary hospital in Alexandria, Egypt. Res J Microbiol. 2011;6(10):750–760. doi:10.17311/jm.2011.750.760
  • Girija SA, Jayaseelan VP, Arumugam P. Prevalence of VIM-and GIM-producing Acinetobacter baumannii from patients with severe urinary tract infection. Acta Microbiol Immunol Hung. 2018;65(4):539–550. doi:10.1556/030.65.2018.038
  • Robledo IE, Aquino EE, Santé MI, et al. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob Agents Chemother. 2010;54(3):1354–1357. doi:10.1128/AAC.00899-09
  • Moubareck C, Brémont S, Conroy MC, Courvalin P, Lambert T. GES-11, a novel integron-associated GES variant in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(8):3579–3581. doi:10.1128/AAC.00072-09
  • Bogaerts P, Naas T, El Garch F, et al. GES extended-spectrum β-lactamases in Acinetobacter baumannii isolates in Belgium. Antimicrob Agents Chemother. 2010;54(11):4872–4878. doi:10.1128/AAC.00871-10
  • Al-Agamy MH, Jeannot K, El-Mahdy TS, et al. First detection of GES-5 carbapenemase-producing Acinetobacter baumannii isolate. Microb Drug Resist. 2017;23(5):556–562. doi:10.1089/mdr.2016.0152
  • Yungyuen T, Chatsuwan T, Plongla R, et al. Nationwide surveillance and molecular characterization of critically drug-resistant Gram-negative bacteria: results of the Research University Network Thailand study. Antimicrob Agents Chemother. 2021;65(9):e00675–21. doi:10.1128/AAC.00675-21
  • Ruan Z, Chen Y, Jiang Y, et al. Wide distribution of CC92 carbapenem-resistant and OXA-23-producing Acinetobacter baumannii in multiple provinces of China. Int J Antimicrob Agents. 2013;42(4):322–328. doi:10.1016/j.ijantimicag.2013.06.019
  • Katip W, Uitrakul S, Oberdorfer P. A comparison of colistin versus colistin plus meropenem for the treatment of carbapenem-resistant Acinetobacter baumannii in critically ill patients: a propensity score-matched analysis. Antibiotics. 2020;9(10):647. doi:10.3390/antibiotics9100647
  • Katip W, Uitrakul S, Oberdorfer P. Clinical efficacy and nephrotoxicity of the loading dose colistin for the treatment of carbapenem-resistant Acinetobacter baumannii in critically ill patients. Pharmaceutics. 2021;14(1):31. doi:10.3390/pharmaceutics14010031
  • Katip W, Uitrakul S, Oberdorfer P. Clinical outcomes and nephrotoxicity of colistin loading dose for treatment of extensively drug-resistant Acinetobacter baumannii in cancer patients. Infect Drug Resist. 2017;10:293. doi:10.2147/IDR.S144314
  • Katip W, Oberdorfer P, Kasatpibal N. Effectiveness and nephrotoxicity of loading dose colistin–meropenem versus loading dose colistin–imipenem in the treatment of carbapenem-resistant Acinetobacter baumannii infection. Pharmaceutics. 2022;14(6):1266. doi:10.3390/pharmaceutics14061266
  • Seok H, Choi WS, Lee S, et al. What is the optimal antibiotic treatment strategy for carbapenem-resistant Acinetobacter baumannii (CRAB)? A multicentre study in Korea. J Glob Antimicrob Resist. 2021;24:429–439. doi:10.1016/j.jgar.2021.01.018
  • Gandham NR, Gupta N, Jadhav SV, Misra RN. Isolation of Acinetobacter baumannii from cerebrospinal fluid following craniotomy. Med J DY Patil Univ. 2012;5:151–153. doi:10.4103/0975-2870.103347
  • Higgins PG, Schneiders T, Hamprecht A, Seifert H. In vivo selection of a missense mutation in adeR and conversion of the novel bla OXA-164 gene into bla OXA-58 in carbapenem-resistant Acinetobacter baumannii isolates from a hospitalized patient. Antimicrob Agents Chemother. 2010;54(12):5021–5027. doi:10.1128/AAC.00598-10
  • Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: from bench to bedside. Journal of Clinical Cases: World J Clin Cases. 2014;2(12):787. doi:10.12998/wjcc.v2.i12.787
  • Cicek AC, Saral A, Iraz M, et al. OXA-and GES-type β-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Clin Microbiol Infect. 2014;20(5):410–415. doi:10.1111/1469-0691.12338
  • Lee CR, Lee JH, Park M, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol. 2017;7:55. doi:10.3389/fcimb.2017.00055
  • Simo Tchuinte PL, Rabenandrasana MA, Kowalewicz C, et al. Phenotypic and molecular characterisations of carbapenem-resistant Acinetobacter baumannii strains isolated in Madagascar. Antimicrob Resist Infect Control. 2019;8(1):1–9. doi:10.1186/s13756-019-0491-9
  • El-Badawy MF, Abdelwahab SF, Alghamdi SA, Shohayeb MM. Characterization of phenotypic and genotypic traits of carbapenem-resistant Acinetobacter baumannii clinical isolates recovered from a tertiary care hospital in Taif, Saudi Arabia. Infect Drug Resist. 2019;12:3113. doi:10.2147/IDR.S206691
  • El Hafa H, Nayme K, El Hamzaoui N, et al. Dissemination of carbapenem-resistant Acinetobacter baumannii strains carrying the blaGES, blaNDM and blaOXA23 in Morocco. Germs. 2019;9(3):133. doi:10.18683/germs.2019.1168
  • Huang ZY, Li J, Shui J, Wang HC, Hu YM, Zou MX. Co-existence of bla OXA-23 and bla VIM in carbapenem-resistant Acinetobacter baumannii isolates belonging to global complex 2 in a Chinese teaching hospital. Chin Med J. 2019;132(10):1166–1172. doi:10.1097/CM9.0000000000000193
  • Boral B, Unaldi Ö, Ergin A, Durmaz R, Eser ÖK. A prospective multicenter study on the evaluation of antimicrobial resistance and molecular epidemiology of multidrug-resistant Acinetobacter baumannii infections in intensive care units with clinical and environmental features. Ann Clin Microbiol Antimicrob. 2019;18(1):1–9. doi:10.1186/s12941-019-0319-8
  • Vijayakumar S, Mathur P, Kapil A, et al. Molecular characterization & epidemiology of carbapenem-resistant Acinetobacter baumannii collected across India. Indian J Med Res. 2019;149(2):240. doi:10.4103/ijmr.IJMR_2085_17
  • Coskun US, Caliskan E, Cicek AC, Turumtay H, Sandalli C. β-lactamase genes in carbapenem resistance Acinetobacter baumannii isolates from a Turkish university hospital. J Infect Dev Ctries. 2019;13(01):50–55. doi:10.3855/jidc.10556
  • Guo J, Li C. Molecular epidemiology and decreased susceptibility to disinfectants in carbapenem-resistant Acinetobacter baumannii isolated from intensive care unit patients in central China. J Infect Public Health. 2019;12(6):890–896. doi:10.1016/j.jiph.2019.06.007
  • Hoang Quoc C, Nguyen Thi Phuong T, Nguyen Duc H, et al. Carbapenemase genes and multidrug resistance of Acinetobacter baumannii: a cross sectional study of patients with pneumonia in Southern Vietnam. Antibiotics. 2019;8(3):148. doi:10.3390/antibiotics8030148
  • Tafreshi N, Babaeekhou L, Ghane M. Antibiotic resistance pattern of Acinetobacter baumannii from burns patients: increase in prevalence of blaOXA-24-like and blaOXA-58-like genes. Iran J Microbiol. 2019;11(6):502–509.
  • Tavares LC, Vasconcellos FM, Sousa WV, et al. Emergence and persistence of high-risk clones among MDR and XDR A. baumannii at a Brazilian teaching hospital. Front Microbiol. 2019;9:2898. doi:10.3389/fmicb.2018.02898
  • Khaledi M, Shahini Shams Abadi M, Validi M, Zamanzad B, Vafapour R, Gholipour A. Phenotypic and genotypic detection of metallo-β-lactamases in A. baumanii isolates obtained from clinical samples in Shahrekord, southwest Iran. BMC Res Notes. 2019;12(1):1–6. doi:10.1186/s13104-019-4636-y
  • Ranjbar R, Farahani A. Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrob Resist Infect Control. 2019;8(1):1. doi:10.1186/s13756-019-0612-5
  • Sharma M, Singhal L, Gautam V, Ray P. Distribution of carbapenemase genes in clinical isolates of Acinetobacter baumannii & a comparison of MALDI-TOF mass spectrometry-based detection of carbapenemase production with other phenotypic methods. Indian J Med Res. 2020;151(6):585. doi:10.4103/ijmr.IJMR_1383_18
  • Ezadi F, Jamali A, Heidari A, Javid N, Ardebili A. Heteroresistance to colistin in oxacillinase-producing carbapenem-resistant Acinetobacter baumannii clinical isolates from Gorgan, Northern Iran. J Glob Antimicrob Resist. 2020;21:380–385. doi:10.1016/j.jgar.2019.11.010
  • El-Kazzaz W, Metwally L, Yahia R, Al-Harbi N, El-Taher A, Hetta HF. Antibiogram, prevalence of OXA carbapenemase encoding genes, and RAPD-genotyping of multidrug-resistant Acinetobacter baumannii incriminated in hidden community-acquired infections. Antibiotics. 2020;9(9):603. doi:10.3390/antibiotics9090603
  • Rao M, Rashid FA, Shukor S, Hashim R, Ahmad N. Detection of antimicrobial resistance genes associated with carbapenem resistance from the whole-genome sequence of Acinetobacter baumannii isolates from Malaysia. Can J Infect Dis Med Microbiol. 2020. doi:10.1155/2020/5021064
  • Azimi L, Fallah F, Karimi A, et al. Survey of various carbapenem-resistant mechanisms of Acinetobacter baumannii and Pseudomonas aeruginosa isolated from clinical samples in Iran. Iran J Basic Med Sci. 2020;23(11):1396–1400. doi:10.22038/IJBMS.2020.44853.10463
  • Thirapanmethee K, Srisiri-A-Nun T, Houngsaitong J, Montakantikul P, Khuntayaporn P, Chomnawang MT. Prevalence of OXA-type β-lactamase genes among carbapenem-resistant Acinetobacter baumannii clinical isolates in Thailand. Antibiotics. 2020;9(12):864. doi:10.3390/antibiotics9120864
  • de Freitas SB, Amaral SC, Ferreira MR, et al. Molecular characterization of carbapenem-resistant Acinetobacter baumannii associated with nosocomial infection in the Pelotas, RS, Brazil. Curr Microbiol. 2020;77(10):2724–2734. doi:10.1007/s00284-020-02060-w
  • Fam NS, Gamal D, Mohamed SH, et al. Molecular characterization of Carbapenem/Colistin-resistant Acinetobacter baumannii clinical isolates from Egypt by whole-genome sequencing. Infect Drug Resist. 2020;13:4487–4493. doi:10.2147/IDR.S288865
  • Nodari CS, Cayô R, Streling AP, et al. Genomic analysis of carbapenem-resistant Acinetobacter baumannii isolates belonging to major endemic clones in South America. Front Microbiol. 2020;11:584603. doi:10.3389/fmicb.2020.584603
  • Bansal G, Allen-McFarlane R, Eribo B. Antibiotic susceptibility, clonality, and molecular characterization of carbapenem-resistant clinical isolates of Acinetobacter baumannii from Washington DC. Int J Microbiol. 2020;2120159. doi:10.1155/2020/2120159
  • Mortazavi SM, Farshadzadeh Z, Janabadi S, et al. Evaluating the frequency of carbapenem and aminoglycoside resistance genes among clinical isolates of Acinetobacter baumannii from Ahvaz, south-west Iran. New Microbes New Infect. 2020;38:100779. doi:10.1016/j.nmni.2020.100779
  • Anane YA, Apalata T, Vasaikar S, Okuthe GE, Songca S. Molecular detection of carbapenemase-encoding genes in multidrug-resistant acinetobacter baumannii clinical isolates in South Africa. Int J Microbiol. 2020;1–10. doi:10.1155/2020/7380740
  • Lukovic B, Gajic I, Dimkic I, et al. The first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: emergence of OXA-72, OXA-23 and NDM-1-producing isolates. Antimicrob Resist Infect Control. 2020;9(1):1–2. doi:10.1186/s13756-020-00769-8
  • Rezaei A, Fazeli H, Faghri J. Investigation of carbapenem resistant Acinetobacter baumannii ST2 in Iran. Acta Microbiol Immunol Hung. 2021;68(1):20–26. doi:10.1556/030.2020.01164
  • Gozalan A, Unaldı O, Guldemir D, et al. Molecular characterization of carbapenem-resistant Acinetobacter baumannii blood culture isolates from three hospitals in Turkey. Jpn J Infect Dis. 2021;74(3):200–208. doi:10.7883/yoken.JJID.2020.478
  • Wasfi R, Rasslan F, Hassan SS, Ashour HM, El-Rahman A, Ola A. Co-existence of carbapenemase-encoding genes in Acinetobacter baumannii from cancer patients. Infect Dis Ther. 2021;10(1):291–305. doi:10.1007/s40121-020-00369-4
  • Hassan RM, Salem ST, Hassan SI, Hegab AS, Elkholy YS, Chang Y-F. Molecular characterization of carbapenem-resistant Acinetobacter baumannii clinical isolates from Egyptian patients. PLoS One. 2021;16(6):e0251508. doi:10.1371/journal.pone.0251508
  • Kostyanev T, Xavier BB, García-Castillo M, et al. Phenotypic and molecular characterizations of carbapenem-resistant Acinetobacter baumannii isolates collected within the EURECA study. Int J Antimicrob Agents. 2021;57(6):106345. doi:10.1016/j.ijantimicag.2021.106345
  • Adjei AY, Vasaikar SD, Apalata T, Okuthe EG, Songca SP. Phylogenetic analysis of carbapenem-resistant Acinetobacter baumannii isolated from different sources using Multilocus Sequence Typing Scheme. Infect Genet Evol. 2021;96:105132. doi:10.1016/j.meegid.2021.105132
  • Vahhabi A, Hasani A, Rezaee MA, et al. Carbapenem resistance in Acinetobacter baumannii clinical isolates from northwest Iran: high prevalence of OXA genes in sync. Iran J Microbiol. 2021;13(3):282. doi:10.18502/ijm.v13i3.6388
  • Khuntayaporn P, Kanathum P, Houngsaitong J, Montakantikul P, Thirapanmethee K, Chomnawang MT. Predominance of international clone 2 multidrug-resistant Acinetobacter baumannii clinical isolates in Thailand: a nationwide study. Ann Clin Microbiol Antimicrob. 2021;20(1):1. doi:10.1186/s12941-021-00424-z
  • Ejaz H, Ahmad M, Younas S, et al. Molecular epidemiology of extensively-drug resistant Acinetobacter baumannii sequence type 2 co-harboring bla NDM and bla OXA from clinical origin. Infect Drug Resist. 2021;14:1931–9. doi:10.2147/IDR.S310478
  • Zhang Y, Ding F, Luo Y, et al. Distribution pattern of carbapenemases and solitary contribution to resistance in clinical strains of Acinetobacter baumannii. Ann Palliat Med. 2021;10:9184–9191. doi:10.21037/apm-21-1805
  • Namaei MH, Yousefi M, Askari P, Roshanravan B, Hashemi A, Rezaei Y. High prevalence of multidrug-resistant non-fermentative Gram-negative bacilli harboring blaIMP-1 and blaVIM-1 metallo-beta-lactamase genes in Birjand, south-east Iran. Iran J Microbiol. 2021;13(4):470. doi:10.18502/ijm.v13i4.6971
  • Khalil MA, Ahmed FA, Elkhateeb AF, et al. Virulence characteristics of biofilm-forming acinetobacter baumannii in clinical isolates using a Galleria Mellonella Model. Microorganisms. 2021;9(11):2365. doi:10.3390/microorganisms9112365
  • Xu X, Xu C, Salisu RB, Xu W. Beta-lactamase gene expression level of hospital-acquired CRAB isolated from children in Picu. Infect Drug Resist. 2021;14:3195. doi:10.2147/IDR.S322604
  • Kumari M, Verma S, Venkatesh V, et al. Emergence of blaNDM-1 and blaVIM producing Gram-negative bacilli in ventilator-associated pneumonia at AMR Surveillance Regional Reference Laboratory in India. PLoS One. 2021;16(9):e0256308. doi:10.1371/journal.pone.0256308
  • Gandham N, Gupta N, Vyawahare C, Mirza SB, Misra RN. Molecular characterization identifies upstream presence of ISAba1 to OXA carbapenemase genes in carbapenem-resistant Acinetobacter baumannii. J Lab Physicians. 2022;14(01):006–10. doi:10.1055/s-0041-1732809