216
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Plasmodium falciparum Malaria Susceptibility and Severity: Influence of MyD88-Adaptor-Like Gene (rs8177374) Polymorphism

, , ORCID Icon, , , , & show all
Pages 6815-6827 | Received 24 Aug 2022, Accepted 02 Nov 2022, Published online: 28 Nov 2022

References

  • Rani A, Nawaz SK, Irfan S, Arshad M, Bashir R, Shaheen N. Role of MyD88-adaptor-like gene polymorphism rs8177374 in modulation of malaria severity in the Pakistani population. Braz J Infect. 2017;21(4):418–423. doi:10.1016/j.bjid.2017.04.002
  • Arbour NC, Lorenz E, Schutte BC, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000;25(2):187–191. doi:10.1038/76048
  • Oakley MS, Gerald N, McCutchan TF, Aravind L, Kumar S. Clinical and molecular aspects of malaria fever. Trends Parasitol. 2011;27(10):442–449. doi:10.1016/j.pt.2011.06.004
  • Gowda DC. TLR-mediated cell signaling by malaria GPIs. Trends Parasitol. 2007;23(12):596–604. doi:10.1016/j.pt.2007.09.003
  • De Mendonça VR, Goncalves MS, Barral-Netto M. The host genetic diversity in malaria infection. J Trop Med. 2012;2012:1–17. doi:10.1155/2012/940616
  • Zakeri S, Pirahmadi S, Mehrizi AA, Djadid ND. Genetic variation of TLR-4, TLR-9 and TIRAP genes in Iranian malaria patients. Malar J. 2011;10(1):1–7. doi:10.1186/1475-2875-10-77
  • Parroche P, Lauw FN, Goutagny N, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci. 2007;104(6):1919–1924. doi:10.1073/pnas.0608745104
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511. doi:10.1038/nri1391
  • Costa AG, Ramasawmy R, Ibiapina HNS, et al. Association of TLR variants with susceptibility to Plasmodium vivax malaria and parasitemia in the Amazon region of Brazil. PLoS One. 2017;12(8):e0183840. doi:10.1371/journal.pone.0183840
  • O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7(5):353–364. doi:10.1038/nri2079
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–650. doi:10.1016/j.immuni.2011.05.006
  • Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008;7(10):827–840. doi:10.1038/nrd2660
  • Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity. 1997;7(6):837–847. doi:10.1016/S1074-7613(00)80402-1
  • Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science. 1997;278(5343):1612–1615. doi:10.1126/science.278.5343.1612
  • Burns K, Martinon F, Esslinger C, et al. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem. 1998;273(20):12203–12209. doi:10.1074/jbc.273.20.12203
  • Medzhitov R, Preston-Hurlburt P, Kopp E, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2(2):253–258. doi:10.1016/S1097-2765(00)80136-7
  • Guimarães da Costa A, Do Valle Antonelli LR, Augusto Carvalho Costa P, et al. The robust and modulated biomarker network elicited by the Plasmodium vivax infection is mainly mediated by the IL-6/IL-10 axis and is associated with the parasite load. J Immunol Res. 2014;2014. doi:10.1155/2014/318250
  • Belhaouane I, Hoffmann E, Chamaillard M, Brodin P, Machelart A. Paradoxical Roles of the MAL/Tirap Adaptor in Pathologies. Front Immunol. 2020;11:569127. doi:10.3389/fimmu.2020.569127
  • Khor CC, Chapman SJ, Vannberg FO, et al. A Mal functional variant is associated with protection against invasive pneumococcal disease bacteremia, malaria and tuberculosis. Nature Genetics. 2007;39(4):523–528.
  • World Health Organization. Guidelines for the Treatment of Malaria. World Health Organization; 2015.
  • Eticha T, Tamire T, Bati T. Performance evaluation of malaria Pf/Pv Combo test kit at highly malaria-endemic area, Southern Ethiopia: a cross-sectional study. J Trop Med. 2020;2020:1–7. doi:10.1155/2020/1807608
  • World Health Organization. World Malaria Report 2021. World Health Organization; 2021.
  • Nerlich AG, Schraut B, Dittrich S, Jelinek T, Zink AR. Plasmodium falciparum in ancient Egypt. Emerg Infect Dis. 2008;14(8):1317–1319. doi:10.3201/eid1408.080235
  • Kariuki SN, Williams TN. Human genetics and malaria resistance. Hum Genet. 2020;139(6–7):801–811. doi:10.1007/s00439-020-02142-6
  • Yamamoto M, Sato S, Hemmi H, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature. 2002;420(6913):324–329. doi:10.1038/nature01182
  • Mansell A, Brint E, Gould JA, O’Neill LA, Hertzog PJ. Mal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-κB activation by Toll-like receptor (TLR)-2 and TLR4. J Biol Chem. 2004;279(36):37227–37230. doi:10.1074/jbc.C400289200
  • Jenkins KA, Mansell A. TIR-containing adaptors in Toll-like receptor signalling. Cytokine. 2010;49(3):237–244. doi:10.1016/j.cyto.2009.01.009
  • Durrani O, Banahan K, Sheedy FJ, et al. TIRAP Ser180Leu polymorphism is associated with Behcet’s disease. Rheumatology. 2011;50(10):1760–1765. doi:10.1093/rheumatology/ker200
  • Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415(6872):673–679. doi:10.1038/415673a
  • Castiblanco J, Varela D-C, Castaño-Rodríguez N, Rojas-Villarraga A, Hincapié M-E, Anaya J-M. TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect Genet Evol. 2008;8(5):541–544. doi:10.1016/j.meegid.2008.03.001
  • Ramasawmy R, Cunha‐Neto E, Fae KC, et al. Heterozygosity for the S180L variant of MAL/TIRAP, a gene expressing an adaptor protein in the Toll‐like receptor pathway, is associated with lower risk of developing chronic Chagas cardiomyopathy. J Infect Dis. 2009;199(12):1838–1845. doi:10.1086/599212
  • Panda AK, Das BK, Panda A, et al. Heterozygous mutants of TIRAP (S180L) polymorphism protect adult patients with Plasmodium falciparum infection against severe disease and mortality. Infect Genet Evol. 2016;43:146–150. doi:10.1016/j.meegid.2016.04.035
  • Esposito S, Molteni CG, Zampiero A, et al. Role of polymorphisms of toll-like receptor (TLR) 4, TLR9, toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and FCGR2A genes in malaria susceptibility and severity in Burundian children. Malar J. 2012;11(1):196. doi:10.1186/1475-2875-11-196
  • Nejentsev S, Thye T, Szeszko JS, et al. Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat Genet. 2008;40(3):262–263. doi:10.1038/ng0308-261
  • Naderi M, Hashemi M, Pourmontaseri Z, Eskandari-Nasab E, Bahari G, Taheri M. TIRAP rs8177374 gene polymorphism increased the risk of pulmonary tuberculosis in Zahedan, southeast Iran. Asian Pac J Trop Med. 2014;7(6):451–455. doi:10.1016/S1995-7645(14)60073-0
  • Day N, Hien T, Schollaardt T, et al. The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. J Infect Dis. 1999;180(4):1288–1297. doi:10.1086/315016
  • Gogos CA, Drosou E, Bassaris HP, Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis. 2000;181(1):176–180. doi:10.1086/315214
  • Malaguarnera L, Pignatelli S, Musumeci M, Simporè J, Musumeci S. Plasma levels of interleukin-18 and interleukin-12 in Plasmodium falciparum malaria. Parasite Immunol. 2002;24(9–10):489–492. doi:10.1046/j.1365-3024.2002.00485.x
  • Artavanis-Tsakonas K, Tongren J, Riley E. The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clin Exp Immunol. 2003;133(2):145–152. doi:10.1046/j.1365-2249.2003.02174.x
  • Sam-Agudu NA, Greene JA, Opoka RO, et al. TLR9 polymorphisms are associated with altered IFN-gamma levels in children with cerebral malaria. Am J Trop Med Hyg. 2010;82(4):548–555. doi:10.4269/ajtmh.2010.09-0467
  • Boeuf PS, Loizon S, Awandare GA, et al. Insights into deregulated TNF and IL-10 production in malaria: implications for understanding severe malarial anaemia. Malar J. 2012;11(1):1–9. doi:10.1186/1475-2875-11-253
  • Kwiatkowski D, Hill AV, Sambou I, et al. TNF concentration in fatal cerebral non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990;336(8725):1201–1204.
  • Wellems TE, Hayton K, Fairhurst RM. The impact of malaria parasitism: from corpuscles to communities. J Clin Invest. 2009;119(9):2496–2505. doi:10.1172/JCI38307
  • Ferwerda B, Alonso S, Banahan K, et al. Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock. Proc Natl Acad Sci. 2009;106(25):10272–10277. doi:10.1073/pnas.0811273106
  • Stevenson MM, Tam MF, Wolf SF, Sher A. IL-12-induced protection against blood-stage Plasmodium chabaudi AS requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-dependent mechanism. J Immunol. 1995;155(5):2545–2556.
  • Hoffman SL, Crutcher JM, Puri SK, et al. Sterile protection of monkeys against malaria after administration of interleukin-12. Nat Med. 1997;3(1):80–83. doi:10.1038/nm0197-80
  • Trinchieri G. Interleukin-12 and its role in the generation of TH1 cells. Immunol Today. 1993;14(7):335–338. doi:10.1016/0167-5699(93)90230-I
  • Luty AJ, Perkins DJ, Lell B, et al. Low interleukin-12 activity in severe Plasmodium falciparum malaria. Infect Immun. 2000;68(7):3909–3915. doi:10.1128/IAI.68.7.3909-3915.2000
  • Perkins DJ, Weinberg JB, Kremsner PG. Reduced interleukin-12 and transforming growth factor—Β 1 in severe childhood malaria: relationship of cytokine balance with disease severity. J Infect Dis. 2000;182(3):988–992. doi:10.1086/315762
  • Malaguarnera L, Imbesi RM, Pignatelli S, Simpore J, Malaguarnera M, Musumeci S. Increased levels of interleukin-12 in Plasmodium falciparum malaria: correlation with the severity of disease. Parasite Immunol. 2002;24(7):387–389. doi:10.1046/j.1365-3024.2002.00478.x
  • Adachi K, Tsutsui H, Kashiwamura S, et al. Plasmodium berghei infection in mice induces liver injury by an IL-12- and toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J Immunol. 2001;167(10):5928–5934.
  • Damena D, Denis A, Golassa L, Chimusa ER. Genome-wide association studies of severe P. falciparum malaria susceptibility: progress, pitfalls and prospects. BMC Med Genomics. 2019;12(1):120. doi:10.1186/s12920-019-0564-x
  • Ahouidi A, Ali M, Almagro-Garcia J, et al. An open dataset of Plasmodium falciparum genome variation in 7000 worldwide samples. Wellcome Open Res. 2021;6:42. doi:10.12688/wellcomeopenres.16168.2
  • Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genetics. 2005;77(2):171–192. doi:10.1086/432519
  • Nguetse CN, Purington N, Ebel ER, et al. A common polymorphism in the mechanosensitive ion channel PIEZO1 is associated with protection from severe malaria in humans. Proc Natl Acad Sci U S A. 2020;117(16):9074–9081. doi:10.1073/pnas.1919843117