382
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Antimicrobial Profiles and Conventional PCR Assay of Shiga Toxigenic Escherichia coli O157:H7 (STEC) Isolated from Cattle Slaughtered at Bedele Municipal Abattoir, South West Ethiopia

ORCID Icon, , &
Pages 521-530 | Received 05 Oct 2022, Accepted 11 Jan 2023, Published online: 25 Jan 2023

References

  • Hajian S, Rahimi E, Mommtaz H, et al. A 3 year study of Escherichia coli O157: h7 in cattle, camel, sheep, goat, chicken and beef minced meat. Int Conf Food Eng Biotechnol. 2011;9:163–165.
  • Battisti A, Lovari S, Franco A, et al. Prevalence of Escherichia coli O157 in lambs at slaughter in Rome, Central Italy. Epidemiol Infect. 2016;134:415–419. doi:10.1017/S0950268805005236
  • Kolenda R, Burdukiewicz M, Schierack P, et al. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front Cell Infect Microbiol. 2015;5:23. doi:10.3389/fcimb.2015.00023
  • Spano L, Cunha K, Monfardini M, et al. High prevalence of diarrheagenic Escherichia coli carrying toxin-encoding genes isolated from children and adults in south eastern Brazil. BMC Infect Dis. 2017;17:773. doi:10.1186/s12879-017-2872-0
  • Fuller C, Pellino C, Flagler J, et al. Shiga toxin subtypes display dramatic differences in potency. Infect Immun. 2011;79:1329–1337. doi:10.1128/IAI.01182-10
  • European Food Safety Authority (EFSA). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks. EFSA J. 2015;14:4634.
  • Brichta-Harhay D, Guerini MN, Arthur TM. Salmonella and Escherichia coli O157:H7 contamination on hides and carcasses of cull cattle presented for slaughter in the United States: an evaluation of prevalence and bacterial loads by immunomagnetic separation and direct plating methods. Appl Environ Microbiol. 2008;74(20):6289–6297. doi:10.1128/AEM.00700-08
  • Mohammed O, Shimelis D, Admasu P, et al. Prevalence and antimicrobial susceptibility pattern of E. coli isolates from raw meat samples obtained from abattoirs in Dire Dawa City, eastern Ethiopia. Int J Microbiol Res. 2014;5:35–39.
  • Mesele F, Abunna F. Escherichia coli O157: H7 in foods of animal origin and its food safety implications: review. Adv Biol Res. 2019;13(4):134–145.
  • Arthur T, Brichta-Harhay DM, Bosilevac JM. Super shedding of Escherichia coli O157:H7 by cattle and the impact on beef carcass contamination. Meat Sci. 2017;86(1):32–37. doi:10.1016/j.meatsci.2010.04.019
  • Beyi A, Fite A, Tora E, et al. Prevalence and antimicrobial susceptibility of Escherichia coli O157 in beef at butcher shops and restaurants in central Ethiopia. BMC Microbiol. 2017;17,:49. doi:10.1186/s12866-017-0964-z
  • Aklilu F, Daniel K, Ashenafi K, et al. Prevalence and antibiogram of Escherichia coli O157 isolated from bovine in Jimma, Ethiopia: abattoir based survey; Ethiopia. J.Vet.sci. 2017;21:109–120.
  • Colello R, Etcheverrı´a A, Di Conza J, et al. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC). Braz J Microbiol. 2015;46:1–5. doi:10.1590/S1517-838246120130698
  • Ochoa T, Chen J, Walker C, et al. Rifaximin does not induce toxin production or phage-mediated-lysis of Shiga toxin-producing Escherichia coli. Antimicrob Agents Chemother. 2013;51(8):2837–2841. doi:10.1128/AAC.01397-06
  • Wong C, Jelacic S, Habeeb R, et al. Risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157: H7 infections. N Engl J Med. 2000;342(26):1930–1936. doi:10.1056/NEJM200006293422601
  • Tadesse D, Zhao S, Tong E, et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg Infect Dis. 2015;18(5):741–749. doi:10.3201/eid1805.111153
  • Bedasa S, Shiferaw D, Abraha A, et al. Occurrence and antimicrobial susceptibility profile of Escherichia coli O157: H7 from food of animal origin in Bishoftu town, Central Ethiopia. Int J Food Contamination. 2018;5. doi:10.1186/s40550-018-0064-3
  • Sebsibe M, Asfaw E. Occurrence of multi-drug resistant Escherichia coli and Escherichia coli O157: H7 in meat and swab samples of various contact surfaces at abattoir and butcher shops in Jimma town, Southwest district of Ethiopia. Infect Drug Resist. 2020;13:3853–3862. doi:10.2147/IDR.S277890
  • Abdissa R, Haile W, Feyisa A, et al. Prevalence of E. coli O157: H7 in beef cattle at slaughter and beef carcass at retailer shop in Ethiopia. BMC Infect Dis. 2017;17:277. doi:10.1186/s12879-017-2372-2
  • Atnafie B, Paulos D, Abera M, et al. Occurrence of E. coli O157: H7 in cattle feaces and carcass contamination in abattoir and butcher shops, Hawassa, Ethiopia. BMC Microbiol. 2017;17:18–24.
  • Tassew A. Isolation, Identification, Antimicrobial Profile and Molecular Characterization of E. coli O157: H7 at Debrezeit Elfora Export Abattoir and Addis Ababa Abattoirs Enterprise, Ethiopia [MSc dissertation]; 2015.
  • BDAO. Bedele District Agricultural Office Report. Bedele, Ethiopia: BDAO; 2018.
  • Robi D, Gelalcha B. Epidemiological classification of brucellosis in breeding female cattle under traditional breeding system of Jimma zone in Ethiopia. Vet Anim Sci. 2020;9. doi:10.1016/j.vas.2020.100117
  • Patrick A, Richard J. Summarized Body Condition Scoring of Cattle, Western Beef Resource Committee. Fourth ed. University of Idaho; 2020.
  • Thrusfield M. Veterinary Epidemiology. 3rd ed. Oxford, UK: Blackwell Science Ltd; 2005.
  • Mora A, Blanco J, Blanco M, et al. Antimicrobial resistance of Shiga toxin (verotoxin)-producing Escherichia coli O157: H7 and non-O157 strains isolated from humans, cattle, sheep and food in Spain. J Res Microbiol. 2015;156:793–806.
  • Inat G, Siriken B. Detection of Escherichia coli O157 and Escherichia coli O157: H7 by the immunomagnetic separation technique and stx1 and stx2 genes by multiplex PCR in slaughtered cattle in Samsun Province. Turkey J Vet Sci. 2010;11:321–326. doi:10.4142/jvs.2010.11.4.321
  • Abreham S, Teklu A, Cox E, et al. Escherichia coli O157: H7:distribution, molecular characterization, antimicrobial resistance patterns and source of contamination of sheep and goat carcasses at an export abattoir, Mojdo, Ethiopia. BMC Microbiol. 2019;19:215. doi:10.1186/s12866-019-1590-8
  • Abayneh M, Asfaw E. Occurrence of multi-drug resistant E. coli O157: H7 in meat and swab samples at abattoir and butcher shops in Jimma town, Ethiopia. BMC Infect Dis. 2014. doi:10.21203/rs.3.rs-33376/v1
  • Ben A, Amir F, Ann M, et al. A risk assessment model for E. coli O157: H7 in ground beef and beef cuts in Canada: evaluating the effects of interventions. La Tunisie medicale. 2014;92:284–285.
  • Hamid M, Tefera T, Eguale T, et al. E. coli O157: H7: prevalence, Identification and antimicrobial resistance at Addis Ababa Municipal abattoir, Ethiopia. Int J Adv Res Biol Sci. 2018;10:136–146.
  • Iweriebor B, Iwu C, Obi L, et al. Multiple antibiotic resistance among Shiga toxin producing E. coli O157: H7 in feaces of dairy cattle farms in Eastern Cape of South Africa, Iweriebor. BMC Microbiol. 2015;15:195–213. doi:10.1186/s12866-015-0553-y
  • Naylor S, Low J, Besser T, et al. Lymphoid follicle dense mucosa at the terminal rectum is the principal site of colonization of Enterohemorrhagic Escherichia coli O157: H7 in the bovine host. J Infect Immun. 2003;71:1505–1512. doi:10.1128/IAI.71.3.1505-1512.2003
  • Sheng H, Lim J, Knecht H, et al. Role of Escherichia coliO157: H7Virulence factors in colonization at the Bovine Terminal Rectal Mucosa, University of Idaho, Department of Molecular Biology, and Biochemistry, Moscow, Idaho. Infect Immun. 2016;74:83844.
  • Mekonnen H, Habtamu T, Kelali A, et al. Food safety knowledge and practices of abattoir and butchery shops and the microbial profile of meat in Mekelle City, Ethiopia. Asian Pac J Trop Biomed. 2013;3(5):407–412. doi:10.1016/S2221-1691(13)60085-4
  • Tadesse D, Zhaos S, Tong E, et al. Antimicrobial drug resistance in Escherichia coli from human and food animals, United States. J Emerg Infect Dis. 2012;2012:1950–2002.
  • Messele Y, Abdi R, Yalew S, et al. Molecular determination of antimicrobial resistance in Escherichia coli isolated from raw meat in Addis Ababa and Bishoftu, Ethiopia. Ann ClinMicrobiol Antimicrob. 2017;16(55). doi:10.1186/s12941-017-0233-x
  • Natvig E, Ingham S, Ingham B, et al. Salmonella enteric serovar Typhimurium and Escherichia coli contamination of root and leaf vegetables grown in soils with incorporated bovine manure. Appl Environ Microbiol. 2012;68:2737–2744. doi:10.1128/AEM.68.6.2737-2744.2002
  • Dejene H. Epidemiology and Assessment of Critical Control Points of E. coli O157: H7along Dairy Supply Chains in Central Ethiopia College of Veterinary Medicine and Agriculture, Department of Clinical studies [MVSc Thesis]; 2018.
  • Reuben R, Owuna G. Antimicrobial resistance patterns of Escherichia coli O157: H7 from Nigerian fermented milk samples in Nasarawa state, Nigeria. Int J Pharma Sci Invent. 2014;2:38–44.
  • Alam M, Akther S, Sarwar N, et al. Prevalence and antimicrobial susceptibility of E. coli O157 isolated from raw milk marketed in Chittagong, Bangladesh. Turk J Agric. 2017;5:214–220. doi:10.24925/turjaf.v5i3.214-220.976
  • Mesele F. Occurrence of Escherichia Coli O157: H7 in Lactating Cows and Dairy Farm Environment and Its Antimicrobial Susceptibility Pattern at Adami Tulu JidoKombolcha District, Mid Rift Valley, Ethiopia [MSc dissertation]; 2018.
  • Ahemed A, Shiloach Y, Robbins J, et al. Safety and immunogenicity of Escherichia coli O157 O-specific polysaccharide conjugate vaccine in 2–5-year-old children. J Infect Dis. 2005;193:515–521. doi:10.1086/499821
  • Tassew A. Isolation, Identification, Antimicrobial Profile and Molecular Characterization of E. coli O157: H7 at Debrezeit Elfora Export Abattoir and Addis Ababa Abattoirs Enterprise, Ethiopia [MSc dissertation]; 2015.
  • Sharaf E, Shabana I. Prevalence and molecular characterization of Shiga toxin-producing Escherichia coli isolates from human and sheep in Al-Madinah Al-Munawarah. AlMunawarah Infect. 2016;21. doi:10.22354/in.v21i2.651
  • Frydendahl K. Prevalence of sero-group and virulence genes in E. coli associated with post weaning diarrhea and oedema disease in pigs and comparison of diagnostic approaches. Vet Microbiol. 2013;85:169–182. doi:10.1016/S0378-1135(01)00504-1
  • Hornitzky M, Walker B, Bettelheim K, et al. Virulence properties and serotypes of Shiga toxin producing Escherichia coli from healthy Australian cattle. Appl Environ Microbiol. 2015;68:6439–6445. doi:10.1128/AEM.68.12.6439-6445.2002
  • Pradel N, Livrelli V, DeChamps C, et al. Prevalence and characterization of Shiga toxin producing Escherichia coli isolates from cattle, food and children during a one-year prospective study in France. J Clin Microbiol. 2010;38:1023–1031. doi:10.1128/JCM.38.3.1023-1031.2000
  • Johnsen G, Yngvild W, Heir E, et al. Escherichia coli O157: H7 in faeces from cattle, sheep and pigs in the southwest part of Norway during 1998 and 1999. Int J Food Microbiol. 2011;65:193–200. doi:10.1016/S0168-1605(00)00518-3
  • Omisakin F, Macrae M, Ogden I, et al. Concentration and prevalence of Escherichia coli O157 in cattle faeces at slaughter. Environ Microbiol. 2003;69:2444–2447. doi:10.1128/AEM.69.5.2444-2447.2003