917
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Detection of Antibiotic Resistance Genes in Pseudomonas aeruginosa by Whole Genome Sequencing

ORCID Icon
Pages 6703-6709 | Received 15 Sep 2022, Accepted 14 Nov 2022, Published online: 18 Nov 2022

References

  • Breidenstein EBM, de la Fuente-Nunez C, Hancock R. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419–426. doi:10.1016/j.tim.2011.04.005
  • Juan C, Torrens G, Gonzalez-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram negative opportunistic pathogens. FEMS Microbiol Rev. 2017;41(6):781–815. doi:10.1093/femsre/fux043
  • Kos VN, Déraspe M, McLaughlin RE, et al. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother. 2015;59(1):427–436. PMID: 25367914; PMCID: PMC4291382. doi:10.1128/AAC.03954-14
  • Horcajada JP, Montero M, Oliver A, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):e00031–19. PMID: 31462403; PMCID: PMC6730496. doi:10.1128/CMR.00031-19
  • Lopez-Causape C, Cabot G, Barrio-Tofino ED, Oliver A. The versatile mutational resistome of Pseudomonas aeruginosa. Front Microbiol. 2018;9:685. doi:10.3389/fmicb.2018.00685
  • Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151–171. doi:10.1016/j.drup.2010.08.003
  • Xavier BB, Das AJ, Cochrane G, et al. Consolidating and exploring antibiotic resistance gene data resources. J Clin Microbiol. 2016;54(4):851–859. doi:10.1128/JCM.02717-15
  • Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–2644. doi:10.1093/jac/dks261
  • Alcock BP, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517–D525. PMID: 31665441; PMCID: PMC7145624. doi:10.1093/nar/gkz935
  • Papp M, Solymosi N. Review and comparison of antimicrobial resistance gene databases. Antibiotics. 2022;11(3):339. doi:10.3390/antibiotics11030339
  • Ahmed OB. Incidence and antibiotic susceptibility pattern of pseudomonas aeruginosa isolated from inpatients in two tertiary hospitals. Clin Microbiol. 2016;5:248. doi:10.4172/2327-5073.1000248
  • Gholami A, Majidpour A, Talebi-Taher M, Boustanshenas M, Adabi M. PCR-based assay for the rapid and precise distinction of Pseudomonas aeruginosa from other Pseudomonas species recovered from burns patients. J Prev Med Hyg. 2016;57(2):E81–5.
  • Arya M, Arya P, Biswas D, Prasad R. The antimicrobial susceptibility pattern of the bacterial isolates from post-operative wound infections. Indian J Pathol Microbiol. 2005;48(2):266–269.
  • Obritsch MD, Fish DN, Maclaren R, Jung R. The national surveillance of antimicrobial resistance in the Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother. 2004;48:4606–4610. doi:10.1128/AAC.48.12.4606-4610.2004
  • Nolan LM, Turnbull L, Katrib M, et al. Pseudomonas aeruginosa is capable of natural transformation in biofilms. Microbiology. 2020;166(10):995–1003. PMID: 32749953; PMCID: PMC7660920. doi:10.1099/mic.0.000956
  • McAulay K, Schuetz AN, Fauntleroy K, et al. Multidrug-resistant Pseudomonas aeruginosa in healthcare facilities in Port-au-Prince, Haiti. J Glob Antimicrob Resist. 2021;25:60–65. doi:10.1016/j.jgar.2021.02.016
  • Du SJ, Kuo HC, Cheng CH, Fei ACY, Wei HW, Chang SK. Molecular mechanisms of ceftazidime resistance in Pseudomonas aeruginosa isolates from canine and human infections. Vet Med. 2010;55(4):172–182. doi:10.17221/64/2010-VETMED
  • Algun A, Arisoy GT, Ozbakkaloglu B. The resistance of Pseudomonas aeruginosa strains to fluoroquinolones group of antibiotics. Ind J Med Micro. 2004;22(2):112–114. doi:10.1016/S0255-0857(21)02891-7
  • National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470–485. doi:10.1016/j.ajic.2004.10.001
  • CDC. Antibiotic resistance threats in the United States. Atlanta, GA: CDC; 2013.
  • Greipel L, Fischer S, Klockgether J, et al. Molecular epidemiology of mutations in antimicrobial resistance loci of Pseudomonas aeruginosa isolates from airways of cystic fibrosis patients. Antimicrob Agents Chemother. 2016;60(11):6726–6734. doi:10.1128/AAC.00724-16
  • Madaha EL, Mienie C, Gonsu HK, et al. Whole-genome sequence of multi-drug resistant Pseudomonas aeruginosa strains UY1PSABAL and UY1PSABAL2 isolated from human bronchoalveolar lavage, Yaounde´, Cameroon. PLoS One 2020; 15(9):e0238390.
  • Grandjean T, Le Guern R, Duployez C, Faure K, Kipnis E, Dessein R. Draft Genome Sequences of Two Pseudomonas aeruginosa multidrug-resistant clinical isolates, PAL0.1 and PAL1.1. Microbiol Resour Announc. 2018;7(17):1–2. doi:10.1128/MRA.00940-18
  • Hussain M, Suliman M, Ahmed A, Altayb H, Elneima E. Draft genome sequence of a multidrug-resistant Pseudomonas aeruginosa strain isolated from a patient with a urinary tract infection in Khartoum, Sudan. Genome Announc. 2017;5(16):1–2. doi:10.1128/genomeA.00203-17
  • Subedi D, Vijay AK, Kohli GS, Rice SA, Willcox MJS. Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci Rep. 2018;8(1):15668. doi:10.1038/s41598-018-34020-7
  • Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22:582–610. doi:10.1128/CMR.00040-09
  • Castan˜eda-Garcı´a A, Rodrı´guez-Rojas A, Guelfo JR, Bla´zquez J. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J Bacteriol. 2009;191:6968–6974. doi:10.1128/JB.00748-09
  • Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2004;48(6):2043–2048. doi:10.1128/AAC.48.6.2043-2048.2004
  • Subedi D, Vijay AK, Kohli GS, Rice SA, Willcox M. Nucleotide sequence analysis of NPS-1 β-lactamase and a novel integron (In1427)-carrying transposon in an MDR Pseudomonas aeruginosa keratitis strain. J Antimicrob Chemother. 2018;73(6):1724–1726. doi:10.1093/jac/dky073
  • Domínguez M, Miranda CD, Fuentes O, et al. Occurrence of transferable integrons and sul and dfr genes among sulfonamide-and/or trimethoprim-resistant bacteria isolated from Chilean salmonid farms. Front Microbiol. 2019;10:748. doi:10.3389/fmicb.2019.00748
  • Vinué L, Sáenz Y, Rojo-Bezares B, et al. Genetic environment of sul genes and characterisation of integrons in Escherichia coli isolates of blood origin in a Spanish hospital. Int J Antimicrob Agents. 2010;35(5):492–496. doi:10.1016/j.ijantimicag.2010.01.012
  • da Fonseca ÉL, Vieira VV, Cipriano R, Vicente ACP. Emergence of blaGES-5 in clinical colistin-only-sensitive (COS) Pseudomonas aeruginosa strain in Brazil. J Antimicrob Chemother. 2007;59(3):576–577. doi:10.1093/jac/dkl517