163
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Novel Bifunctional Nanoplatform with Aggregation-Induced Emission Property for Efficient Photodynamic Killing of Bacteria and Wound Healing

, , , , , , & show all
Pages 7351-7361 | Received 30 Sep 2022, Accepted 06 Dec 2022, Published online: 14 Dec 2022

References

  • Zeng Q, Qi X, Shi G, et al. Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano. 2022;16(2):1708–1733. doi:10.1021/acsnano.1c08411
  • Wang S, Zhou Y, Liang X, et al. Platinum-cerium bimetallic nano-raspberry for atherosclerosis treatment via synergistic foam cell inhibition and P2Y12 targeted antiplatelet aggregation. Chem Eng J. 2022;430:132859. doi:10.1016/j.cej.2021.132859
  • Songca SP, Adjei Y. Applications of antimicrobial photodynamic therapy against bacterial biofilms. Int J Mol Sci. 2022;23(6):3209. doi:10.3390/ijms23063209
  • Polat E, Kang K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines. 2021;9(6):584. doi:10.3390/biomedicines9060584
  • Masiera N, Bojarska A, Gawryszewska I, et al. Antimicrobial photodynamic therapy by means of porphycene photosensitizers. J Photochem Photobiol B. 2017;174:84–89. doi:10.1016/j.jphotobiol.2017.07.016
  • Wang Y, Xu Y, Guo X, et al. Enhanced antimicrobial activity through the combination of antimicrobial photodynamic therapy and low-frequency ultrasonic irradiation. Adv Drug Deliv Rev. 2022;183:114168. doi:10.1016/j.addr.2022.114168
  • Awad M, Thomas N, Barnes TJ, et al. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release. 2022;346:300–316. doi:10.1016/j.jconrel.2022.04.035
  • Agazzi ML, Ballatore MB, Durantini AM, et al. BODIPYs in antitumoral and antimicrobial photodynamic therapy: an integrating review. J Photochem Photobiol C. 2019;40:21–48. doi:10.1016/j.jphotochemrev.2019.04.001
  • Zhang Y, Zhou K, Jiang H, et al. Poly (NIPAM-co-thienoviologen) for multi-responsive smart windows and thermo-controlled photodynamic antimicrobial therapy. J Mater Chem A. 2021;9:18369–18376. doi:10.1039/D1TA03936A
  • Dias LD, Blanco KC, Mfouo-Tynga IS, et al. Curcumin as a photosensitizer: from molecular structure to recent advances in antimicrobial photodynamic therapy. J Photochem Photobiol C. 2020;45:100384.
  • Wang K-N, Liu L-Y, Mao D, et al. A nuclear-targeted AIE photosensitizer for enzyme inhibition and photosensitization in cancer cell ablation. Angew Chem Int Ed Engl. 2022;61(15):e202114600. doi:10.1002/anie.202114600
  • Tavakkoli Yaraki M, Pan Y, Hu F, et al. Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater Chem Front. 2020;4(10):3074–3085. doi:10.1039/D0QM00469C
  • He X, Situ B, Gao M, et al. Stereotactic photodynamic therapy using a two-photon AIE photosensitizer. Small. 2019;15(50):1905080. doi:10.1002/smll.201905080
  • Chen C, Ni X, Tian H-W, et al. Calixarene-based supramolecular AIE dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery. Angew Chem Int Ed Engl. 2020;59(25):10008–10012. doi:10.1002/anie.201916430
  • Zhao W, He Z, Peng Q, et al. Highly sensitive switching of solid-state luminescence by controlling intersystem crossing. Nat Commun. 2018;9(1):3044. doi:10.1038/s41467-018-05476-y
  • Yang L, Wang X, Zhang G, et al. Aggregation-induced intersystem crossing: a novel strategy for efficient molecular phosphorescence. Nanoscale. 2016;8(40):17422–17426. doi:10.1039/C6NR03656B
  • Yang Y, Tian -J-J, Wang L, et al. D-π-A type carbazole and triphenylamine derivatives with different π-conjugated units: tunable aggregation-induced emission (AIE) and mechanofluorochromic properties. J Photochem Photobiol A. 2022;429:113905. doi:10.1016/j.jphotochem.2022.113905
  • Kathirvelan D, Mayakrishnan S, Uma Maheswari N, et al. A simple D–π–A system of phenanthroimidazole-π-fluorenone for highly efficient non-doped bipolar AIE luminogens: synthesis, and molecular optical, thermal and electrochemical properties. New J Chem. 2020;44(5):1785–1794. doi:10.1039/C9NJ05226G
  • Wang L, Xia Q, Zhang Z, et al. Precise design and synthesis of an AIE fluorophore with near-infrared emission for cellular bioimaging. Mater Sci Eng C. 2018;93:399–406. doi:10.1016/j.msec.2018.08.012
  • Gao C, Hossain MK, Wahab MA, et al. Understanding the details of aggregation-induced emission (AIE) effect in D-π-A type imidazolium-based compounds through the stepwise change of rotatable moieties. Dyes Pigm. 2018;160:909–914. doi:10.1016/j.dyepig.2018.08.032
  • Luo W, Tan Y, Gui Y, et al. Near-infrared-emissive AIE bioconjugates: recent advances and perspectives. Molecules. 2022;27(12):3914. doi:10.3390/molecules27123914
  • Xu L, Zhang S, Liang X, et al. Novel biocompatible AIEgen from natural resources: palmatine and its bioimaging application. Dyes Pigm. 2020;184:108860. doi:10.1016/j.dyepig.2020.108860
  • Van Lysebetten D, Malfanti A, Deswarte K, et al. Lipid-polyglutamate nanoparticle vaccine platform. ACS Appl Mater Interface. 2021;13(5):6011–6022. doi:10.1021/acsami.0c20607
  • Thorp EB, Boada C, Jarbath C, et al. Nanoparticle platforms for antigen-specific immune tolerance. Front Immunol. 2020;11:945. doi:10.3389/fimmu.2020.00945
  • Ortelli S, Costa AL, Zanoni I, et al. TiO2@BSA nano-composites investigated through orthogonal multi-techniques characterization platform. Colloids Surf B Biointerfaces. 2021;207:112037. doi:10.1016/j.colsurfb.2021.112037
  • Shahgholian N, Rajabzadeh G. Preparation of BSA nanoparticles and its binary compounds via ultrasonic piezoelectric oscillator for curcumin encapsulation. J Drug Deliv Sci Technol. 2019;54:101323. doi:10.1016/j.jddst.2019.101323
  • Zhang W, Jiang P, Chen Y, et al. Suppressing the cytotoxicity of CuO nanoparticles by uptake of curcumin/BSA particles. Nanoscale. 2016;8(18):9572–9582. doi:10.1039/C6NR02181F
  • Chern C-S, Lee C-K, Kuan C, et al. Adsorption of BSA on the amphiphilic PEG graft copolymer-coated particles. Colloid Polym Sci. 2005;283(8):917–924. doi:10.1007/s00396-004-1241-x
  • Wang Y, Wu Y, Liu Y, et al. BSA-mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy. Adv Funct Mater. 2016;26(29):5335–5344. doi:10.1002/adfm.201601341
  • Jeon S, Oberreit DR, Van Schooneveld G, et al. Ion-mobility-based quantification of surface-coating-dependent binding of serum albumin to superparamagnetic iron oxide nanoparticles. ACS Appl Mater Interfaces. 2016;8(37):24482–24490. doi:10.1021/acsami.6b09070
  • Zhang CY, Dong X, Gao J, et al. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci Adv. 2019;5(11):eaax7964. doi:10.1126/sciadv.aax7964
  • Kang M, Zhou C, Wu S, et al. Evaluation of structure-function relationships of aggregation-induced emission luminogens for simultaneous dual applications of specific discrimination and efficient photodynamic killing of gram-positive bacteria. J Am Chem Soc. 2019;141(42):16781–16789. doi:10.1021/jacs.9b07162
  • Ren B, Li K, Liu Z, et al. White light-triggered zwitterionic polymer nanoparticles based on an AIE-active photosensitizer for photodynamic antimicrobial therapy. J Mater Chem B. 2020;8(47):10754–10763. doi:10.1039/D0TB02272A