193
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Resistance to Cefiderocol Involved Expression of PER-1 β-Lactamase and Downregulation of Iron Transporter System in Carbapenem-Resistant Acinetobacter baumannii

, , , , , , , , & show all
Pages 7177-7187 | Received 08 Oct 2022, Accepted 02 Dec 2022, Published online: 07 Dec 2022

References

  • E.M.A. Fetcroja (cefiderocol); 2022. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/fetcroja. Accessed December 3, 2022.
  • Sato T, Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect. 2019;69:S538–s543. doi:10.1093/cid/ciz826
  • Wang C, Yang D, Wang Y, Ni W. Cefiderocol for the treatment of multidrug-resistant Gram-negative bacteria: a systematic review of currently available evidence. Front Pharmacol. 2022;13:896971. doi:10.3389/fphar.2022.896971
  • Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021;21:226–240. doi:10.1016/S1473-3099(20)30796-9
  • Longshaw C, Manissero D, Tsuji M, Echols R, Yamano Y. In vitro activity of the siderophore cephalosporin, cefiderocol, against molecularly characterized, carbapenem-non-susceptible Gram-negative bacteria from Europe. JAC Antimicrob Resist. 2020;2:dlaa060. doi:10.1093/jacamr/dlaa060
  • Wang Y, Li Y, Zhao J, Guan J, Ni W, Gao Z. Susceptibility of cefiderocol and other antibiotics against carbapenem-resistant, Gram-negative bacteria. Ann Transl Med. 2022;10:261. doi:10.21037/atm-22-889
  • Karakonstantis S, Rousaki M, Kritsotakis EI. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance. Antibiotics. 2022;11:723. doi:10.3390/antibiotics11060723
  • Ito A, Sato T, Ota M, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob Agents Chemother. 2018;62. doi:10.1128/aac.01454-17
  • Gupta A, Landman D, Quale J. Relationship of TonB-dependent receptors with susceptibility to cefiderocol in clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother. 2022;77:1282–1285. doi:10.1093/jac/dkac022
  • Malik S, Kaminski M, Landman D, Quale J. Cefiderocol Resistance in Acinetobacter baumannii: roles of beta-Lactamases, Siderophore Receptors, and Penicillin Binding Protein 3. Antimicrob Agents Chemother. 2020;64. doi:10.1128/AAC.01221-20
  • Ito A, Nishikawa T, Matsumoto S, et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60:7396–7401. doi:10.1128/aac.01405-16
  • Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi:10.1093/bioinformatics/bty560
  • Luo R, Liu B, Xie Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1:18. doi:10.1186/2047-217X-1-18
  • Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules. 2021;26:2671. doi:10.3390/molecules26092671
  • Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018;46:e35. doi:10.1093/nar/gkx1321
  • Schmartz GP, Hartung A, Hirsch P, et al. PLSDB: advancing a comprehensive database of bacterial plasmids. Nucleic Acids Res. 2022;50:D273–D278. doi:10.1093/nar/gkab1111
  • Alcock BP, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi:10.1093/nar/gkz935
  • Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–2747. doi:10.1093/bioinformatics/btv195
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. doi:10.1186/1471-2105-9-559
  • McQueary CN, Actis LA. Acinetobacter baumannii biofilms: variations among strains and correlations with other cell properties. J Microbiol. 2011;49:243–250. doi:10.1007/s12275-011-0343-7
  • Price TK, Davar K, Contreras D, et al. Case report and genomic analysis of cefiderocol-resistant Escherichia coli clinical isolates. Am J Clin Pathol. 2022;157:257–265. doi:10.1093/ajcp/aqab115
  • Mushtaq S, Sadouki Z, Vickers A, Livermore DM, Woodford N. In vitro activity of cefiderocol, a siderophore cephalosporin, against multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother. 2020;64. doi:10.1128/AAC.01582-20
  • Iregui A, Khan Z, Landman D, Quale J. Activity of cefiderocol against enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii endemic to medical centers in New York City. Microb Drug Resist. 2020;26:722–726. doi:10.1089/mdr.2019.0298
  • Kohira N, Hackel MA, Ishioka Y, et al. Reduced susceptibility mechanism to cefiderocol, a siderophore cephalosporin, among clinical isolates from a global surveillance programme (SIDERO-WT-2014). J Glob Antimicrob Resist. 2020;22:738–741. doi:10.1016/j.jgar.2020.07.009
  • Poirel L, Sadek M, Nordmann P. Contribution of PER-type and NDM-type beta-lactamases to cefiderocol resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2021;65:e0087721. doi:10.1128/AAC.00877-21
  • Yamano Y, Ishibashi N, Kuroiwa M, Takemura M, Sheng WH, Hsueh PR. Characterisation of cefiderocol-non-susceptible Acinetobacter baumannii isolates from Taiwan. J Glob Antimicrob Resist. 2022;28:120–124. doi:10.1016/j.jgar.2021.12.017
  • Wang Q, Jin L, Sun S, et al. Occurrence of high levels of cefiderocol resistance in carbapenem-resistant Escherichia coli before its approval in china: a report from China CRE-network. Microbiol Spectr. 2022;10:e0267021. doi:10.1128/spectrum.02670-21
  • Bao J, Xie L, Ma Y, An R, Gu B, Wang C. Proteomic and transcriptomic analyses indicate reduced biofilm-forming abilities in cefiderocol-resistant Klebsiella pneumoniae. Front Microbiol. 2021;12:778190. doi:10.3389/fmicb.2021.778190
  • Sevilla E, Bes MT, Gonzalez A, Peleato ML, Fillat MF. Redox-based transcriptional regulation in prokaryotes: revisiting model mechanisms. Antioxid Redox Signal. 2019;30:1651–1696. doi:10.1089/ars.2017.7442