206
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Nomogram for Predicting Delayed Viral Shedding in Non-Severe SARS-CoV-2 Omicron Infection

ORCID Icon, , , , , & ORCID Icon show all
Pages 2487-2500 | Received 21 Feb 2023, Accepted 19 Apr 2023, Published online: 27 Apr 2023

References

  • Bhattacharyya P, Das S, Aich S, Sarkar J. COVID-19: morphology and mechanism of the SARS-CoV-2, global outbreak, medication, vaccines and future of the virus. Frontiers Biosci. 2021;13(2):272. doi:10.52586/e884
  • Li J, Lai S, Gao GF, Shi W. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature. 2021;600(7889):408–418. doi:10.1038/s41586-021-04188-6
  • Tian D, Sun Y, Xu H, Ye Q. The emergence and epidemic characteristics of the highly mutated SARS‐CoV‐2 Omicron variant. J Med Virol. 2022;94(6):2376–2383. doi:10.1002/jmv.27643
  • Prasad N, Derado G, Nanduri SA, et al. Effectiveness of a COVID-19 additional primary or booster vaccine dose in preventing SARS-CoV-2 infection among nursing home residents during widespread circulation of the omicron variant — United States, February 14–March 27, 2022. Morbidity Mortal Wkly Rep. 2022;71(18):633–637. doi:10.15585/mmwr.mm7118a4
  • Zhang X, Zhang W, Chen S. Shanghai’s life-saving efforts against the current omicron wave of the COVID-19 pandemic. Lancet Lond Engl. 2022;399(10340):2011–2012. doi:10.1016/s0140-6736(22)00838-8
  • Bálint G, Vörös-Horváth B, Széchenyi A. Omicron: increased transmissibility and decreased pathogenicity. Signal Transduct Target Ther. 2022;7(1):151. doi:10.1038/s41392-022-01009-8
  • Wang L, Cheng G. Sequence analysis of the emerging SARS‐CoV‐2 variant Omicron in South Africa. J Med Virol. 2022;94(4):1728–1733. doi:10.1002/jmv.27516
  • Lee YH, Hong CM, Lee TH, Hwang YJ, Kim DH, Lee J. Factors associated with prolonged viral detection in asymptomatic and mildly symptomatic patients with SARS-CoV-2 infection. J Infect Dev Ctries. 2022;16(02):291–297. doi:10.3855/jidc.15072
  • Hu X, Xing Y, Jia J, et al. Factors associated with negative conversion of viral RNA in patients hospitalized with COVID-19. Sci Total Environ. 2020;728:138812. doi:10.1016/j.scitotenv.2020.138812
  • Saxena SK, Kumar S, Ansari S, et al. Characterization of the novel SARS‐CoV‐2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. 2022;94(4):1738–1744. doi:10.1002/jmv.27524
  • Zhang W, Zhou S, Wang G, et al. Clinical predictors and RT-PCR profile of prolonged viral shedding in patients with SARS-CoV-2 Omicron variant in Shanghai: a retrospective observational study. Frontiers Public Heal. 2022;10:1015811. doi:10.3389/fpubh.2022.1015811
  • CDC Online Newsroom | CDC. CDC streamlines COVID-19 guidance to help the public better protect themselves and understand their risk. Available from: https://www.cdc.gov/media/releases/2022/p0811-covid-guidance.html. Accessed April 5, 2023.
  • The Japan Times. Japan to shorten COVID-19 isolation period to seven days. Available from: https://www.japantimes.co.jp/news/2022/09/06/national/covid19-isolation-period-shortened/. Accessed April 5, 2023.
  • Center NC for GH and MNI of IDDC and P. Active Epidemiological Investigation on SARS‐CoV‐2 infection caused by omicron variant (Pango Lineage B. 1.1. 529) in Japan: preliminary report on infectious period; 2022.
  • National Health Care Commission of China. Diagnosis and treatment plan for COVID-19(trial version 9). Int J Epidemiol Infect Dis. 2022;49(02):73–80. doi:10.3760/cma.j.cn331340-20220325-00065
  • Zhang Y, Chen P, Zhou Q, et al. A novel immune-related prognostic signature in head and neck squamous cell carcinoma. Frontiers Genetics. 2021;12:570336. doi:10.3389/fgene.2021.570336
  • Lin Y, Wang M, Jia J, et al. Development and validation of a prognostic nomogram to predict recurrence in high-risk gastrointestinal stromal tumour: a retrospective analysis of two independent cohorts. Ebiomedicine. 2020;60:103016. doi:10.1016/j.ebiom.2020.103016
  • Su YS, Gelman A, Hill J, Yajima M. Multiple imputation with diagnostics (mi) in R: opening windows into the black box. J Stat Softw. 2011;45(2). doi:10.18637/jss.v045.i02
  • Harrell FE. Regression Modeling Strategies, with Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer; 2001:465–507. doi:10.1007/978-1-4757-3462-1_19
  • Dauriz M, Targher G, Temporelli PL, et al. Prognostic impact of diabetes and prediabetes on survival outcomes in patients with chronic heart failure: a post‐hoc analysis of the GISSI‐HF (Gruppo Italiano per lo Studio della Sopravvivenza nella Insufficienza Cardiaca‐Heart Failure) trial. J Am Heart Assoc. 2017;6(7):e005156. doi:10.1161/jaha.116.005156
  • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837. doi:10.2307/2531595
  • Lin A, He ZB, Zhang S, Zhang JG, Zhang X, Yan WH. Early risk factors for the duration of severe acute respiratory syndrome coronavirus 2 viral positivity in patients with coronavirus disease 2019. Clin Infect Dis. 2020;71(16):2061–2065. doi:10.1093/cid/ciaa490
  • Xiao AT, Tong YX, Zhang S. Profile of RT-PCR for SARS-CoV-2: a preliminary study from 56 COVID-19 patients. Clin Infect Dis. 2020;71(16):2249–2251. doi:10.1093/cid/ciaa460
  • Xu K, Chen Y, Yuan J, et al. Factors associated with prolonged viral RNA shedding in patients with coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2020;71(15):799–806. doi:10.1093/cid/ciaa351
  • Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. 2020;369:m1443. doi:10.1136/bmj.m1443
  • Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. New Engl J Med. 2020;382(12):1177–1179. doi:10.1056/nejmc2001737
  • Yuan S, Pan Y, Xia Y, et al. Development and validation of an individualized nomogram for early prediction of the duration of SARS-CoV-2 shedding in COVID-19 patients with non-severe disease. J Zhejiang Univ Sci B. 2021;22(4):318–329. doi:10.1631/jzus.b2000608
  • Bajaj V, Gadi N, Spihlman AP, Wu SC, Choi CH, Moulton VR. Aging, Immunity, and COVID-19: how Age Influences the Host Immune Response to Coronavirus Infections? Front Physiol. 2021;11:571416. doi:10.3389/fphys.2020.571416
  • Khatri R, Siddqui G, Sadhu S, et al. Intrinsic D614G and P681R/H mutations in SARS-CoV-2 VoCs Alpha, Delta, Omicron and viruses with D614G plus key signature mutations in spike protein alters fusogenicity and infectivity. Med Microbiol Immun. 2022:1–20. doi:10.1007/s00430-022-00760-7
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/s0140-6736(20)30566-3
  • Santesmasses D, Castro JP, Zenin AA, et al. COVID‐19 is an emergent disease of aging. Aging Cell. 2020;19(10):e13230. doi:10.1111/acel.13230
  • McWilliam S, Riordan A. How to use: c-reactive protein. Archives Dis Child Educ Pract Ed. 2010;95(2):55. doi:10.1136/adc.2009.174367
  • Sadeghi-Haddad-Zavareh M, Bayani M, Shokri M, et al. C-reactive protein as a prognostic indicator in COVID-19 patients. Interdiscip Perspect Infect Dis. 2021;2021:5557582. doi:10.1155/2021/5557582
  • Smilowitz NR, Kunichoff D, Garshick M, et al. C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J. 2021;42(23):ehaa1103. doi:10.1093/eurheartj/ehaa1103
  • Bouayed MZ, Laaribi I, Chatar CEM, et al. C-Reactive Protein (CRP): a poor prognostic biomarker in COVID-19. Front Immunol. 2022;13:1040024. doi:10.3389/fimmu.2022.1040024
  • Zhang H, Chen W, Ye X, et al. Clinical characteristics of patients infected with novel coronavirus wild strain, Delta variant strain and Omicron variant strain in Quanzhou: a real-world study. Exp Ther Med. 2022;25(1):62. doi:10.3892/etm.2022.11761
  • Chang H, Li J. “Lymphocyte * Neutrophil” count decreased in SARS‐CoV‐2 Omicron patients in Shanghai with no significant change in CRP and SAA. J Clin Lab Anal. 2022;36(10):e24671. doi:10.1002/jcla.24671
  • Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145–148. doi:10.1016/j.cca.2020.03.022
  • Wool GD, Miller JL. The impact of COVID-19 disease on platelets and coagulation. Pathobiology. 2021;88(1):15–27. doi:10.1159/000512007
  • Jiang S, Huang Q, Xie W, Lv C, Quan X. The association between severe COVID‐19 and low platelet count: evidence from 31 observational studies involving 7613 participants. Brit J Haematol. 2020;190(1):e29–e33. doi:10.1111/bjh.16817
  • Bury L, Camilloni B, Castronari R, et al. Search for SARS-CoV-2 RNA in platelets from COVID-19 patients. Platelets. 2021;32(2):284–287. doi:10.1080/09537104.2020.1859104
  • Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020;99(6):1205–1208. doi:10.1007/s00277-020-04019-0
  • Semple JW, Aslam R, Kim M, Speck ER, Freedman J. Platelet-bound lipopolysaccharide enhances Fc receptor–mediated phagocytosis of IgG-opsonized platelets. Blood. 2007;109(11):4803–4805. doi:10.1182/blood-2006-12-062695
  • Kim JK, Jeon J, Kim JW, Kim G. Correlation between abnormal platelet count and respiratory viral infection in patients from Cheonan, Korea. J Clin Lab Anal. 2016;30(3):185–189. doi:10.1002/jcla.21822
  • Liu PP, Blet A, Smyth D, Li H. The science underlying COVID-19: implications for the cardiovascular system. Circulation. 2020;142(1):68–78. doi:10.1161/circulationaha.120.047549
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond Engl. 2020;395(10223):497–506. doi:10.1016/s0140-6736(20)30183-5
  • Tabary M, Khanmohammadi S, Araghi F, Dadkhahfar S, Tavangar SM. Pathologic features of COVID-19: a concise review. Pathol Res Pract. 2020;216(9):153097. doi:10.1016/j.prp.2020.153097
  • Fathi N, Rezaei N. Lymphopenia in COVID‐19: therapeutic opportunities. Cell Biol Int. 2020;44(9):1792–1797. doi:10.1002/cbin.11403
  • Henry BM, Aggarwal G, Wong J, et al. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: a pooled analysis. Am J Emerg Med. 2020;38(9):1722–1726. doi:10.1016/j.ajem.2020.05.073
  • Chhetri S, Khamis F, Pandak N, Khalili HA, Said E, Petersen E. A fatal case of COVID-19 due to metabolic acidosis following dysregulate inflammatory response (cytokine storm). Idcases. 2020;21:e00829. doi:10.1016/j.idcr.2020.e00829
  • Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infec. 2020;9(1):761–770. doi:10.1080/22221751.2020.1747363
  • Ouyang Y, Yin J, Wang W, et al. Downregulated gene expression spectrum and immune responses changed during the disease progression in patients with COVID-19. Clin Infect Dis. 2020;71(16):2052–2060. doi:10.1093/cid/ciaa462
  • Corley MJ, Ndhlovu LC. DNA methylation analysis of the COVID-19 host cell receptor, Angiotensin I Converting Enzyme 2 Gene (ACE2) in the respiratory system reveal age and gender differences; 2020. doi:10.20944/preprints202003.0295.v1
  • Crimi E, Benincasa G, Figueroa-Marrero N, Galdiero M, Napoli C. Epigenetic susceptibility to severe respiratory viral infections and its therapeutic implications: a narrative review. Bja Br J Anaesth. 2020;125(6):1002–1017. doi:10.1016/j.bja.2020.06.060
  • Sadeghi S, Nasri P, Nasri E, et al. The correlation between viral shedding duration and blood biomarkers in COVID-19-infected patients. J Res Med Sci. 2022;27:43. doi:10.4103/jrms.jrms_401_21
  • Nair AP, Soliman A, Masalamani MAA, et al. Clinical outcome of eosinophilia in patients with COVID-19: a controlled study. Acta Bio Medica Atenei Parmensis. 2020;91(4):e2020165. doi:10.23750/abm.v91i4.10564
  • Xie G, Ding F, Han L, Yin D, Lu H, Zhang M. The role of peripheral blood eosinophil counts in COVID‐19 patients. Allergy. 2021;76(2):471–482. doi:10.1111/all.14465
  • Zhang J, Dong X, Cao Y, et al. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy. 2020;75(7):1730–1741. doi:10.1111/all.14238
  • Mu T, Yi Z, Wang M, et al. Expression of eosinophil in peripheral blood of patients with COVID‐19 and its clinical significance. J Clin Lab Anal. 2021;35(1):e23620. doi:10.1002/jcla.23620
  • Yan B, Yang J, Xie Y, Tang X. Relationship between blood eosinophil levels and COVID-19 mortality. World Allergy Organ J. 2021;14(3):100521. doi:10.1016/j.waojou.2021.100521
  • Blanch-Ruiz MA, Ortega-Luna R, Gómez-García G, Martínez-Cuesta MÁ, Álvarez Á. Role of neutrophil extracellular traps in COVID-19 progression: an insight for effective treatment. Biomed. 2021;10(1):31. doi:10.3390/biomedicines10010031
  • Hazeldine J, Lord JM. Neutrophils and COVID-19: active participants and rational therapeutic targets. Front Immunol. 2021;12:680134. doi:10.3389/fimmu.2021.680134
  • Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842–844. doi:10.1038/s41591-020-0901-9
  • Chua RL, Lukassen S, Trump S, et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat Biotechnol. 2020;38(8):970–979. doi:10.1038/s41587-020-0602-4
  • Lu G, Zhang Y, Zhang H, et al. Geriatric risk and protective factors for serious COVID-19 outcomes among older adults in Shanghai Omicron wave. Emerg Microbes Infec. 2022;11(1):2045–2054. doi:10.1080/22221751.2022.2109517
  • Wilhelm A, Widera M, Grikscheit K, et al. Limited neutralisation of the SARS-CoV-2 Omicron subvariants BA.1 and BA.2 by convalescent and vaccine serum and monoclonal antibodies. Ebiomedicine. 2022;82:104158. doi:10.1016/j.ebiom.2022.104158
  • Wang K, Jia Z, Bao L, et al. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature. 2022;603(7903):919–925. doi:10.1038/s41586-022-04466-x
  • Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022;23(2):186–193. doi:10.1038/s41590-021-01122-w