199
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Evaluation of the Effect and Mechanism of Sanhuang Ointment on MRSA Infection in the Skin and Soft Tissue via Network Pharmacology

ORCID Icon, , , , ORCID Icon, , , & show all
Pages 7071-7095 | Received 07 Jun 2023, Accepted 27 Oct 2023, Published online: 07 Nov 2023

References

  • Moffarah AS, Al Mohajer M, Hurwitz BL, Armstrong DG. Skin and soft tissue infections. Microbiol Spectr. 2016;4(4). doi:10.1128/microbiolspec.DMIH2-0014-2015
  • Lakhundi S, Zhang KY. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Review. Clin Microbiol Rev. 2018;31(4):103. e00020–18. doi:10.1128/cmr.00020-18
  • Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Review. Nat Rev Microbiol. 2019;17(4):203–218. doi:10.1038/s41579-018-0147-4
  • Bateman A, Martin M-J, Orchard S. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–D489. doi:10.1093/nar/gkaa1100
  • Baek JY, Chung DR, Ko KS, et al. Genetic alterations responsible for reduced susceptibility to vancomycin in community-associated MRSA strains of ST72. J Antimicrob Chemother. 2017;72(9):2454–2460. doi:10.1093/jac/dkx175
  • Werth BJ, Jain R, Hahn A, et al. Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin- and vancomycin-containing regimen. Clin Microbiol Infect. 2018;24(4):429.e1–429.e5. doi:10.1016/j.cmi.2017.07.028
  • Haibang P, Bo W, Xinping W, Guotai W, Hua Y. 2538 cases of common surgical diseases treated by external application of Sanhuang ointment. J External TreatTrad Chin Med. 2015;24(02):30–31.
  • Haibang P, Guotai W, Bo Y. Experimental study on anti-inflammatory and analgesic effects of different blends of Sanhuang Tablet. China Trad Chin Med Technol. 2015;22(05):502–503.
  • Haibang P, Guotai W, Jianfeng Y, Bo W, Xiaopeng D. Clinical observation of sanhuang ointment in treating local soft tissue infection. Chin J Exp Formulas. 2017;23(20):174–179. doi:10.13422/j.cnki.syfjx.2017200174
  • Hao Y, Huo J, Wang T, Sun G, Wang W. Chemical profiling of Coptis rootlet and screening of its bioactive compounds in inhibiting Staphylococcus aureus by UPLC-Q-TOF/MS. J Pharm Biomed Anal. 2020;180:113089. doi:10.1016/j.jpba.2019.113089
  • Hwang SJ, Lee HJ. Phenyl-beta-d-glucopyranoside exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells. Article. Inflammation. 2015;38(3):1071–1079. doi:10.1007/s10753-014-0072-2
  • Guven-Maiorov E, Keskin O, Gursoy A, Nussinov R. A structural view of negative regulation of the toll-like receptor-mediated inflammatory pathway. Biophys J. 2015;109(6):1214–1226. doi:10.1016/j.bpj.2015.06.048
  • Choi YY, Kim MH, Han JM, et al. The anti-inflammatory potential of Cortex Phellodendron in vivo and in vitro: down-regulation of NO and iNOS through suppression of NF-κB and MAPK activation. Int Immunopharmacol. 2014;19(2):214–220. doi:10.1016/j.intimp.2014.01.020
  • Hu ZW, Lin JH, Chen JT, et al. Overview of viral pneumonia associated with influenza virus, respiratory syncytial virus, and coronavirus, and therapeutics based on natural products of medicinal plants. Review. Front Pharmacol. 2021;12(21):630834. doi:10.3389/fphar.2021.630834
  • Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem. 2017;131:68–80. doi:10.1016/j.ejmech.2017.03.004
  • Wang H-Z, Yu C-H, Gao J, Zhao G-R. HPLC分析比较炮制和提取方法对黄芩活性成分的影响 [Effects of processing and extracting methods on active components in Radix Scutellariae by HPLC analysis]. Zhongguo Zhong Yao Za Zhi. 2007;32(16):1637–1640. Chinese.
  • Liao H, Ye J, Gao L, Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: a comprehensive review. Biomed Pharmacother. 2021;133:110917. doi:10.1016/j.biopha.2020.110917
  • Haibang P, Tianming W, Yan C, et al. Effects of sanhuang ointment on subcutaneous soft tissue inflammation and TLR2/ NF-κB signaling pathway in MRSA infection model rats. Chin J Inform Trad Chin Med. 2022;29(08):54–59. doi:10.19879/j.cnki.1005-5304.202112157
  • Li S, Zhang ZQ, Wu LJ, Zhang XG, Li YD, Wang YY. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst Biol. 2007;1(1):51–60. doi:10.1049/iet-syb:20060032
  • Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–120. doi:10.1016/S1875-5364(13)60037-0
  • Wang SL, Tang C, Zhao H, et al. Network pharmacological analysis and experimental validation of the mechanisms of action of Si-Ni-San against liver fibrosis. Article. Front Pharmacol. 2021;12(19):656115. doi:10.3389/fphar.2021.656115
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–690. doi:10.1038/nchembio.118
  • Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13. doi:10.1186/1758-2946-6-13
  • Pichler K, Warner K, Magrane M. SPIN: submitting sequences determined at protein level to UniProt. Curr Protoc Bioinformatics. 2018;62(1):e52. doi:10.1002/cpbi.52
  • Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43(Database issue):D789–D798. doi:10.1093/nar/gku1205
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131
  • Malachowa N, Kobayashi SD, Lovaglio J, DeLeo FR. Mouse model of Staphylococcus aureus skin infection. Methods Mol Biol. 2019;1960:139–147. doi:10.1007/978-1-4939-9167-9_12
  • Wang Z, Gao C, Zhang L, Sui R. Retraction notice to “Hesperidin methylchalcone (HMC) hinders amyloid-β induced Alzheimer’s disease by attenuating cholinesterase activity, macromolecular damages, oxidative stress and apoptosis via regulating NF-κB and Nrf2/HO-1 pathways” [Int. J. Biol. Macromol. 233 (2023) 123169]. Int J Biol Macromol. 2023;249:125762. doi:10.1016/j.ijbiomac.2023.125762
  • Boisson B, Wang C, Pedergnana V, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013;39(4):676–686. doi:10.1016/j.immuni.2013.09.002
  • Liu C, Qian W, Qian Y, et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci Signal. 2009;2(92):ra63. doi:10.1126/scisignal.2000382
  • Puel A, Cypowyj S, Bustamante J, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332(6025):65–68. doi:10.1126/science.1200439
  • Kuestner RE, Taft DW, Haran A, et al. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol. 2007;179(8):5462–5473. doi:10.4049/jimmunol.179.8.5462
  • Wright JF, Bennett F, Li B, et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J Immunol. 2008;181(4):2799–2805. doi:10.4049/jimmunol.181.4.2799
  • Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183(6):2593–2603. doi:10.1084/jem.183.6.2593
  • Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol. 2017;18(6):612–621. doi:10.1038/ni.3742
  • Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309–324. doi:10.1038/nri.2017.142
  • Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. Int Rev Cell Mol Biol. 2018;335:41–84. doi:10.1016/bs.ircmb.2017.07.007
  • Y-R X, Lei C-Q. TAK1-TABs complex: a central signalosome in inflammatory responses. Front Immunol. 2020;11:608976. doi:10.3389/fimmu.2020.608976
  • Amatya N, Garg AV, Gaffen SL. IL-17 signaling: the Yin and the Yang. Trends Immunol. 2017;38(5):310–322. doi:10.1016/j.it.2017.01.006
  • Liu K, Ding T, Fang L, et al. Organic selenium ameliorates -induced mastitis in rats by inhibiting the activation of NF-κB and MAPK signaling pathways. Front Vet Sci. 2020;7:443. doi:10.3389/fvets.2020.00443
  • Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transd Target Ther. 2017;2(1). doi:10.1038/sigtrans.2017.23