236
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Potentiation and Mechanism of Berberine as an Antibiotic Adjuvant Against Multidrug-Resistant Bacteria

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7313-7326 | Received 18 Jul 2023, Accepted 27 Oct 2023, Published online: 20 Nov 2023

References

  • World Health Organization. Global antimicrobial resistance and use surveillance system (‎GLASS)‎ report: 2022; 2022. Available from: https://www.who.int/publications-detail-redirect/9789240062702. Accessed November 1, 2023.
  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0
  • O’Neill J Tackling drug-resistant infections globally: final report and recommendations. (Review on Antimicrobial Resistance, London). 2016. Available from: https://wellcomecollection.org/works/thvwsuba. Accessed November 1, 2023.
  • Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol. 2020;88(1):26–40. doi:10.1007/s00239-019-09914-3
  • World Health Organization. Antimicrobial resistance; 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed November 1, 2023.
  • Douafer H, Andrieu V, Phanstiel O, Brunel JM. Antibiotic adjuvants: make antibiotics great again! J Med Chem. 2019;62(19):8665–8681. doi:10.1021/acs.jmedchem.8b01781
  • Liu Y, Li R, Xiao X, Wang Z. Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Crit Rev Microbiol. 2019;45(3):301–314. doi:10.1080/1040841X.2019.1599813
  • Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med. 2020;14(5):564–582. doi:10.1007/s11684-019-0724-6
  • Kong Y, Li L, Zhao LG, Yu P, Li DD. A patent review of berberine and its derivatives with various pharmacological activities (2016–2020). Expert Opin Ther Pat. 2022;32(2):211–223. doi:10.1080/13543776.2021.1974001
  • Li Z, Wang Y, Xu Q, et al. Berberine and health outcomes: an umbrella review. Phytother Res. 2023;37(5):2051–2066. doi:10.1002/ptr.7806
  • Hobson C, Chan AN, Wright GD. The antibiotic resistome: a guide for the discovery of natural products as antimicrobial agents. Chem Rev. 2021;121(6):3464–3494. doi:10.1021/acs.chemrev.0c01214
  • Millar BC, Rao JR, Moore JE. Fighting antimicrobial resistance (AMR): Chinese herbal medicine as a source of novel antimicrobials – an update. Lett Appl Microbiol. 2021;73(4):400–407. doi:10.1111/lam.13534
  • Jadimurthy R, Mayegowda SB, Nayak SC, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnol Report. 2022;34:e00728. doi:10.1016/j.btre.2022.e00728
  • Herman A, Herman AP. Herbal products and their active constituents used alone and in combination with antibiotics against multidrug-resistant bacteria. Planta Med. 2023;89(02):168–182. doi:10.1055/a-1890-5559
  • Feng X, Sureda A, Jafari S, et al. Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics. Theranostics. 2019;9(7):1923–1951. doi:10.7150/thno.30787
  • Patel P. A bird’s eye view on a therapeutically ‘wonder molecule’: berberine. Phytomed Plus. 2021;1(3):100070. doi:10.1016/j.phyplu.2021.100070
  • Chen C, Yu Z, Li Y, Fichna J, Storr M. Effects of berberine in the gastrointestinal tract — a review of actions and therapeutic implications. Am J Chin Med. 2014;42(05):1053–1070. doi:10.1142/S0192415X14500669
  • Zhang L, Wu X, Yang R, et al. Effects of berberine on the gastrointestinal microbiota. Front Cell Infect Microbiol. 2020;10:588517. doi:10.3389/fcimb.2020.588517
  • Chu M, Zhang MB, Liu YC, et al. Role of berberine in the treatment of methicillin-resistant staphylococcus aureus infections. Sci Rep. 2016;6(1):24748. doi:10.1038/srep24748
  • Jamshaid F, Dai J, Yang LX. New development of novel berberine derivatives against bacteria. MRMC. 2020;20(8):716–724. doi:10.2174/1389557520666200103115124
  • Ghareeb DA, Saleh SR, Seadawy MG, et al. Nanoparticles of ZnO/Berberine complex contract COVID-19 and respiratory co-bacterial infection in addition to elimination of hydroxychloroquine toxicity. J Pharm Investig. 2021;51(6):735–757. doi:10.1007/s40005-021-00544-w
  • Zhang C, Sheng J, Li G, et al. Effects of berberine and its derivatives on cancer: a systems pharmacology review. Front Pharmacol. 2019;10:1461. doi:10.3389/fphar.2019.01461
  • Devarajan N, Jayaraman S, Mahendra J, et al. Berberine—A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytother Res. 2021;35(6):3059–3077. doi:10.1002/ptr.7032
  • Ai X, Yu P, Peng L, et al. Berberine: a review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front Pharmacol. 2021;12:762654. doi:10.3389/fphar.2021.762654
  • Singh S, Pathak N, Fatima E, Negi AS. Plant isoquinoline alkaloids: advances in the chemistry and biology of berberine. Eur J Med Chem. 2021;226:113839. doi:10.1016/j.ejmech.2021.113839
  • Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): a clinical review. Phytother Res. 2019;33(3):504–523. doi:10.1002/ptr.6252
  • Khoshandam A, Imenshahidi M, Hosseinzadeh H, et al. Pharmacokinetic of berberine, the main constituent of Berberis vulgaris L: a comprehensive review. Drug Deliv and Transl Res. 2022;36(11):4063–4079. doi:10.1002/ptr.7589
  • Xiong RG, Huang SY, Wu SX, et al. Anticancer effects and mechanisms of berberine from medicinal herbs: an update review. Molecules. 2022;27(14):4523. doi:10.3390/molecules27144523
  • Coates ARM, Hu Y, Holt J, Yeh P. Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction. Expert Rev Anti Infect Ther. 2020;18(1):5–15. doi:10.1080/14787210.2020.1705155
  • Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics. 2021;11(10):4910–4928. doi:10.7150/thno.56205
  • Norden CW, Wentzel H, Keleti E. Comparison of techniques for measurement of in vitro antibiotic synergism. J Infect Dis. 1979;140(4):629–633. doi:10.1093/infdis/140.4.629
  • Wright GD. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol. 2016;24(11):862–871. doi:10.1016/j.tim.2016.06.009
  • World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed; 2019. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed November 1, 2023.
  • Hu F, Guo Y, Yang Y, et al. Resistance reported from China antimicrobial surveillance network (CHINET) in 2018. Eur J Clin Microbiol Infect Dis. 2019;38(12):2275–2281. doi:10.1007/s10096-019-03673-1
  • Koulenti D, Song A, Ellingboe A, et al. Infections by multidrug-resistant gram-negative bacteria: what’s new in our arsenal and what’s in the pipeline? Int J Antimicrob Agents. 2019;53(3):211–224. doi:10.1016/j.ijantimicag.2018.10.011
  • Song M, Liu Y, Huang X, et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat Microbiol. 2020;5(8):1040–1050. doi:10.1038/s41564-020-0723-z
  • Holger D, Kebriaei R, Morrisette T, Lev K, Alexander J, Rybak M. Clinical Pharmacology of Bacteriophage Therapy: a Focus on Multidrug-Resistant Pseudomonas aeruginosa Infections. Antibiotics. 2021;10(5):556. doi:10.3390/antibiotics10050556
  • Sörensen M, Khakimov B, Nurjadi D, et al. Comparative evaluation of the effect of different growth media on in vitro sensitivity to azithromycin in multi-drug resistant Pseudomonas aeruginosa isolated from cystic fibrosis patients. Antimicrob Resist Infect Control. 2020;9(1):197. doi:10.1186/s13756-020-00859-7
  • Leroy AG, Caillon J, Caroff N, et al. Could azithromycin be part of Pseudomonas aeruginosa acute pneumonia treatment? Front Microbiol. 2021;12:642541. doi:10.3389/fmicb.2021.642541
  • Li Y, Huang J, Li L, Liu L. Synergistic activity of berberine with azithromycin against Pseudomonas Aeruginosa isolated from patients with cystic fibrosis of lung in vitro and in vivo. Cell Physiol Biochem. 2017;42(4):1657–1669. doi:10.1159/000479411
  • Morita Y, Nakashima KI, Nishino K, et al. Berberine is a novel type efflux inhibitor which attenuates the MexXY-mediated aminoglycoside resistance in pseudomonas aeruginosa. Front Microbiol. 2016;7:1223. doi:10.3389/fmicb.2016.01223
  • Laudadio E, Cedraro N, Mangiaterra G, et al. Natural alkaloid berberine activity against Pseudomonas aeruginosa MexXY-mediated aminoglycoside resistance: in silico and in vitro studies. J Nat Prod. 2019;82(7):1935–1944. doi:10.1021/acs.jnatprod.9b00317
  • Mangiaterra G, Cedraro N, Laudadio E, et al. The natural alkaloid berberine can reduce the number of Pseudomonas aeruginosa Tolerant cells. J Nat Prod. 2021;84(4):993–1001. doi:10.1021/acs.jnatprod.0c01151
  • Su F, Wang J. Berberine inhibits the MexXY‑OprM efflux pump to reverse imipenem resistance in a clinical carbapenem‑resistant Pseudomonas aeruginosa isolate in a planktonic state. Exp Ther Med. 2018;15(1):467–472. doi:10.3892/etm.2017.5431
  • Li X, Song Y, Wang L, et al. A potential combination therapy of berberine hydrochloride with antibiotics against multidrug-resistant Acinetobacter baumannii. Front Cell Infect Microbiol. 2021;11:660431. doi:10.3389/fcimb.2021.660431
  • Shi C, Li M, Muhammad I, et al. Combination of berberine and ciprofloxacin reduces multi-resistant Salmonella strain biofilm formation by depressing mRNA expressions of luxS, rpoE, and ompR. J Vet Sci. 2018;19(6):808. doi:10.4142/jvs.2018.19.6.808
  • Zhou XY, Ye XG, He LT, et al. In vitro characterization and inhibition of the interaction between ciprofloxacin and berberine against multidrug-resistant Klebsiella pneumonia e. J Antibiot. 2016;69(10):741–746. doi:10.1038/ja.2016.15
  • Yu HH, Kim KJ, Cha JD, et al. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food. 2005;8(4):454–461. doi:10.1089/jmf.2005.8.454
  • Zuo GY, Li Y, Han J, Wang GC, Zhang YL, Bian ZQ. Antibacterial and synergy of berberines with antibacterial agents against clinical multi-drug resistant isolates of Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules. 2012;17(9):10322–10330. doi:10.3390/molecules170910322
  • Xia S, Ma L, Wang G, et al. In vitro antimicrobial activity and the mechanism of berberine against methicillin-resistant Staphylococcus aureus isolated from bloodstream infection patients. IDR. 2002;15:1933–1944. doi:10.2147/IDR.S357077
  • Liang RM, Yong XL, Duan YQ, et al. Potent in vitro synergism of fusidic acid (FA) and berberine chloride (BBR) against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). World J Microbiol Biotechnol. 2014;30(11):2861–2869. doi:10.1007/s11274-014-1712-2
  • Wultańska D, Piotrowski M, Pituch H. The effect of berberine chloride and/or its combination with vancomycin on the growth, biofilm formation, and motility of Clostridioides difficile. Eur J Clin Microbiol Infect Dis. 2020;39(7):1391–1399. doi:10.1007/s10096-020-03857-0
  • Menichini M, Lari N, Rindi L. Effect of efflux pump inhibitors on the susceptibility of Mycobacterium avium complex to clarithromycin. J Antibiot. 2020;73(2):128–132. doi:10.1038/s41429-019-0245-1
  • Tseng CY, Sun MF, Li TC, Lin CT. Effect of coptis chinensis on biofilm formation and antibiotic susceptibility in Mycobacterium abscessus. Evid Based Compl Alter Med. 2020;2020:1–9. doi:10.1155/2020/9754357
  • Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol. 2020;18(7):392–407. doi:10.1038/s41579-020-0331-1
  • Assefa M, Amare A, Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep. 2021;48(10):6987–6998. doi:10.1007/s11033-021-06690-6
  • Rai S, Kumar A, Darby EM, et al. Bacteriophage therapeutics to confront multidrug‐resistant Acinetobacter baumannii ‐ a global health menace. Environ Microbiol Rep. 2022;14(3):347–364. doi:10.1111/1758-2229.12988
  • Chen K, Wai Chi Chan E, Chen S. Evolution and transmission of a conjugative plasmid encoding both ciprofloxacin and ceftriaxone resistance in Salmonella. Emerg Micro Infect. 2019;8(1):396–403. doi:10.1080/22221751.2019.1585965
  • Chen K, Yang C, Dong N, et al. Evolution of ciprofloxacin resistance-encoding genetic elements in Salmonella. mSystems. 2020;5(6):e01234–20. doi:10.1128/mSystems.01234-20
  • Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344–359. doi:10.1038/s41579-019-0315-1
  • Lee AS, de Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4(1):18033. doi:10.1038/nrdp.2018.33
  • Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.); 2019. Available from: https://stacks.cdc.gov/view/cdc/82532. Accessed October 19, 2023.
  • Guery B, Galperine T, Barbut F. Clostridioides difficile: diagnosis and treatments. BMJ. 2019;366:l4609. doi:10.1136/bmj.l4609
  • Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections – a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci. 2020;27(1):74. doi:10.1186/s12929-020-00667-6
  • Daley CL, Iaccarino JM, Lange C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J. 2020;56(1):2000535. doi:10.1183/13993003.00535-2020
  • Darby EM, Trampari E, Siasat P, et al. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol. 2023;21(5):280–295. doi:10.1038/s41579-022-00820-y
  • Lamut A, Peterlin Mašič L, Kikelj D, Tomašič T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med Res Rev. 2019;39(6):2460–2504. doi:10.1002/med.21591
  • Grande R, Puca V, Muraro R. Antibiotic resistance and bacterial biofilm. Expert Opin Ther Pat. 2020;30(12):897–900. doi:10.1080/13543776.2020.1830060
  • Liu D, Huang Q, Gu W, Zeng XA. A review of bacterial biofilm control by physical strategies. Crit Rev Food Sci Nutr. 2022;62(13):3453–3470. doi:10.1080/10408398.2020.1865872
  • Dutt Y, Dhiman R, Singh T, et al. The association between biofilm formation and antimicrobial resistance with possible ingenious bio-remedial approaches. Antibiotics. 2022;11(7):930. doi:10.3390/antibiotics11070930325
  • Zhao Z, Guo M, Xu X, et al. In vitro synergistic inhibitory activity of natural alkaloid berberine combined with azithromycin against alginate production by Pseudomonas aeruginosa PAO1. Oxid Med Cell Longev. 2022;2022:1–10. doi:10.1155/2022/3858500
  • Mohammed YHE, Manukumar HM, Rakesh KP, Karthik CS, Mallu P, Qin HL. Vision for medicine: staphylococcus aureus biofilm war and unlocking key’s for anti-biofilm drug development. Microb Pathog. 2018;123:339–347. doi:10.1016/j.micpath.2018.07.002
  • Xu C, Wang F, Huang F, Yang M, He D, Deng L. Targeting effect of berberine on type I fimbriae of Salmonella Typhimurium and its effective inhibition of biofilm. Appl Microbiol Biotechnol. 2021;105(4):1563–1573. doi:10.1007/s00253-021-11116-1
  • Aswathanarayan JB, Vittal RR. Inhibition of biofilm formation and quorum sensing mediated phenotypes by berberine in Pseudomonas aeruginosa and Salmonella typhimurium. RSC Adv. 2018;8(63):36133–36141. doi:10.1039/C8RA06413J
  • Zhang C, Li Z, Pan Q, et al. Berberine at sub-inhibitory concentration inhibits biofilm dispersal in Staphylococcus aureus. Microbiology. 2022;168(9). doi:10.1099/mic.0.001243
  • Ning Y, Wang X, Chen P, et al. Targeted inhibition of methicillin-resistant Staphylococcus aureus biofilm formation by a graphene oxide-loaded aptamer/berberine bifunctional complex. Drug Deliv. 2022;29(1):1675–1683. doi:10.1080/10717544.2022.2079768
  • Zhao N, Isguven S, Evans R, Schaer TP, Hickok NJ. Berberine disrupts staphylococcal proton motive force to cause potent anti-staphylococcal effects in vitro. Biofilm. 2023;5:100117. doi:10.1016/j.bioflm.2023.100117
  • Zhang X, Sun X, Wu J, et al. Berberine damages the cell surface of methicillin-resistant Staphylococcus aureus. Front Microbiol. 2008;11:621. doi:10.3389/fmicb.2020.00621
  • Wang JJ, Wang J, Li Y, et al. A systematic Cochrane Review of antibiotic adjuvant therapy for pulmonary infection in cystic fibrosis. Zhongguo Zhong Yao Za Zhi. 2021;46(1):33–40. doi:10.19540/j.cnki.cjcmm.20201002.601
  • Ozturk M, Chia JE, Hazra R, et al. Evaluation of berberine as an adjunct to TB treatment. Front Immunol. 2021;12:656419. doi:10.3389/fimmu.2021.656419
  • Habtemariam S. Berberine pharmacology and the gut microbiota: a hidden therapeutic link. Pharmacol Res. 2020;155:104722. doi:10.1016/j.phrs.2020.104722
  • Lv Z, Peng G, Liu W, Xu H, Su J. Berberine blocks the relapse of Clostridium difficile Infection in C57BL/6 mice after standard vancomycin treatment. Antimicrob Agents Chemother. 2015;59(7):3726–3735. doi:10.1128/AAC.04794-14