92
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Prevalence and Molecular Characteristics of Enterococci Isolated from Clinical Bovine Mastitis Cases in Ningxia

ORCID Icon, ORCID Icon, , , ORCID Icon, , & show all
Pages 2121-2129 | Received 26 Jan 2024, Accepted 25 Apr 2024, Published online: 28 May 2024

References

  • Hertl J, Schukken Y, Bar D, et al. The effect of recurrent episodes of clinical mastitis caused by gram-positive and gram-negative bacteria and other organisms on mortality and culling in Holstein dairy cows. J Dairy Sci. 2011;94(10):4863–4877. doi:10.3168/jds.2010-4000
  • Yang F, Zhang S, Shang X, et al. Antimicrobial resistance and virulence genes of Enterococcus faecalis isolated from subclinical bovine mastitis cases in China. J Dairy Sci. 2019;102(1):140–144. doi:10.3168/jds.2018-14576
  • Odierno L, Calvinho L, Traverssa P, Lasagno M, Bogni C, Reinoso E. Conventional identification of Streptococcus uberis isolated from bovine mastitis in Argentinean dairy herds. J Dairy Sci. 2006;89(10):3886–3890. doi:10.3168/jds.S0022-0302(06)72431-6
  • Nonnemann B, Lyhs U, Svennesen L, Kristensen KA, Klaas IC, Pedersen K. Bovine mastitis bacteria resolved by MALDI-TOF mass spectrometry. J Dairy Sci. 2019;102(3):2515–2524. doi:10.3168/jds.2018-15424
  • García-Solache M, Rice LB. The enterococcus: a model of adaptability to its environment. Clin Microbiol Rev. 2019;32(2):e00058–18. doi:10.1128/CMR.00058-18
  • Nasiri M, Hanifian S. Enterococcus faecalis and Enterococcus faecium in pasteurized milk: prevalence, genotyping, and characterization of virulence traits. LWT. 2022;153:112452. doi:10.1016/j.lwt.2021.112452
  • Daza MVB, Milani G, Cortimiglia C, Pietta E, Bassi D, Cocconcelli PS. Genomic insights of Enterococcus faecium UC7251, a multi-drug resistant strain from ready-to-eat food, highlight the risk of antimicrobial resistance in the food chain. Front Microbiol. 2022;13:894241.
  • Eaton TJ, Gasson MJ. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol. 2001;67(4):1628–1635. doi:10.1128/AEM.67.4.1628-1635.2001
  • Yang F, Shi W, Meng N, Zhao Y, Ding X, Li Q. Antimicrobial resistance and virulence profiles of staphylococci isolated from clinical bovine mastitis. Front Microbiol. 2023;14:1190790.
  • Margalho LP, van Schalkwijk S, Bachmann H, Sant’Ana AS. Enterococcus spp. in Brazilian artisanal cheeses: occurrence and assessment of phenotypic and safety properties of a large set of strains through the use of high throughput tools combined with multivariate statistics. Food Control. 2020;118:107425. doi:10.1016/j.foodcont.2020.107425
  • Fu M, Zhang X, Chen B, Li M, Zhang G, Cui L. Characteristics of isolates of Pseudomonas aeruginosa and Serratia marcescens associated with post-harvest Fuzi (Aconitum carmichaelii) rot and their novel loop-mediated isothermal amplification detection methods. Front Microbiol. 2021;12. doi:10.3389/fmicb.2021.705329
  • Tyc O, Zweers H, De Boer W, Garbeva P. Volatiles in inter-specific bacterial interactions. Front Microbiol. 2015;6:1412. doi:10.3389/fmicb.2015.01412
  • Delboni MG, Gomes BP, Francisco PA, Teixeira FB, Drake D. Diversity of Enterococcus faecalis genotypes from multiple oral sites associated with endodontic failure using repetitive sequence-based polymerase chain reaction and arbitrarily primed polymerase chain reaction. J Endodontics. 2017;43(3):377–382. doi:10.1016/j.joen.2016.10.042
  • Zhou N, Zhang J, Fan M, Wang J, Guo G, Wei X. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts. J Dairy Sci. 2012;95(9):4775–4783. doi:10.3168/jds.2011-5271
  • Kim YB, Seo KW, Jeon HY, Lim S-K, Sung HW, Lee YJ. Molecular characterization of erythromycin and tetracycline-resistant Enterococcus faecalis isolated from retail chicken meats. Poultr Sci. 2019;98(2):977–983. doi:10.3382/ps/pey477
  • Shao Y, Zhang W, Guo H, Pan L, Zhang H, Sun T. Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control. 2015;50:250–258. doi:10.1016/j.foodcont.2014.09.003
  • Aarestrup FM, Jensen LB. Trends in antimicrobial susceptibility in relation to antimicrobial usage and presence of resistance genes in Staphylococcus hyicus isolated from exudative epidermitis in pigs. Vet Microbiol. 2002;89(1):83–94. doi:10.1016/S0378-1135(02)00177-3
  • Feng Y, Qi W, Wang X-R, et al. Genetic characterization of antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis cases in Northwest China. J Integr Agric. 2016;15(12):2842–2847. doi:10.1016/S2095-3119(16)61368-0
  • Depardieu F, Perichon B, Courvalin P. Detection of the van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. J Clin Microbiol. 2004;42(12):5857–5860. doi:10.1128/JCM.42.12.5857-5860.2004
  • Amaral DM, Silva LF, Casarotti SN, Nascimento LCS, Penna ALB. Enterococcus faecium and Enterococcus durans isolated from cheese: survival in the presence of medications under simulated gastrointestinal conditions and adhesion properties. J Dairy Sci. 2017;100(2):933–949. doi:10.3168/jds.2016-11513
  • Bhardwaj A, Gupta H, Kapila S, Kaur G, Vij S, Malik RK. Safety assessment and evaluation of probiotic potential of bacteriocinogenic Enterococcus faecium KH 24 strain under in vitro and in vivo conditions. Int J Food Microbiol. 2010;141(3):156–164. doi:10.1016/j.ijfoodmicro.2010.05.001
  • Guerrero-Ramos E, Cordero J, Molina-González D, et al. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain. Food Microbiol. 2016;53:156–164. doi:10.1016/j.fm.2015.09.007
  • Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ. Enterococci in the environment. Microbiol Mol Biol Rev. 2012;76(4):685–706. doi:10.1128/MMBR.00023-12
  • Seishima J, Iida N, Kitamura K, et al. Gut-derived Enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host. Genome Biol. 2019;20:1–18. doi:10.1186/s13059-019-1879-9
  • Hayes JR, English LL, Carr LE, Wagner DD, Joseph SW. Multiple-antibiotic resistance of Enterococcus spp. isolated from commercial poultry production environments. Appl Environ Microbiol. 2004;70(10):6005–6011. doi:10.1128/AEM.70.10.6005-6011.2004
  • Rossitto P, Ruiz L, Kikuchi Y, et al. Antibiotic susceptibility patterns for environmental streptococci isolated from bovine mastitis in central California dairies. J Dairy Sci. 2002;85(1):132–138. doi:10.3168/jds.S0022-0302(02)74061-7
  • Tenhagen B-A, Köster G, Wallmann J, Heuwieser W. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J Dairy Sci. 2006;89(7):2542–2551. doi:10.3168/jds.S0022-0302(06)72330-X
  • Ranasinghe R, Deshapriya R, Abeygunawardana D, Rahularaj R, Dematawewa C. Subclinical mastitis in dairy cows in major milk-producing areas of Sri Lanka: prevalence, associated risk factors, and effects on reproduction. J Dairy Sci. 2021;104(12):12900–12911. doi:10.3168/jds.2021-20223
  • Nam H, Lim S, Moon J, et al. Antimicrobial resistance of enterococci isolated from mastitic bovine milk samples in Korea. Zoonoses Public Health. 2010;57(7‐8):e59–e64. doi:10.1111/j.1863-2378.2009.01307.x
  • Yılmaz EŞ, Aslantaş Ö, Önen SP, Türkyılmaz S, Kürekci C. Prevalence, antimicrobial resistance and virulence traits in enterococci from food of animal origin in Turkey. LWT Food Sci Technol. 2016;66:20–26. doi:10.1016/j.lwt.2015.10.009
  • Esposito E, Campolo M, Casili G, et al. Protective effects of xyloglucan in association with the polysaccharide gelose in an experimental model of gastroenteritis and urinary tract infections. Int J Mol Sci. 2018;19(7):1844. doi:10.3390/ijms19071844
  • Piccinini D, Bernasconi E, Di Benedetto C, Martinetti Lucchini G, Bongiovanni M. Enterococcus hirae infections in the clinical practice. Infect Dis. 2023;55(1):71–73. doi:10.1080/23744235.2022.2125066
  • Gruet P, Maincent P, Berthelot X, Kaltsatos V. Bovine mastitis and intramammary drug delivery: review and perspectives. Adv Drug Deliv Rev. 2001;50(3):245–259. doi:10.1016/S0169-409X(01)00160-0
  • Vanderhaeghen W, Cerpentier T, Adriaensen C, Vicca J, Hermans K, Butaye P. Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated with clinical and subclinical mastitis in Belgian cows. Vet Microbiol. 2010;144(1–2):166–171. doi:10.1016/j.vetmic.2009.12.044
  • Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416–422. doi:10.1016/j.cmi.2015.12.002
  • Fiedler S, Bender J, Klare I, et al. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet (L) and tet (M). J Antimicrob Chemother. 2016;71(4):871–881. doi:10.1093/jac/dkv420
  • Agga GE, Silva PJ, Martin RS. Tetracycline-and macrolide-resistant enterococcus species isolated from a Mink Farm in the United States. Microb Drug Resist. 2022;28(6):734–743. doi:10.1089/mdr.2021.0438
  • Ben Said L, Klibi N, Dziri R, et al. Prevalence, antimicrobial resistance and genetic lineages of Enterococcus spp. from vegetable food, soil and irrigation water in farm environments in Tunisia. J Sci Food Agric. 2016;96(5):1627–1633. doi:10.1002/jsfa.7264
  • Gazzola S, Fontana C, Bassi D, Cocconcelli P. Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and-independent methods. Food Microbiol. 2012;30(2):348–354. doi:10.1016/j.fm.2011.12.005
  • Kaczorek E, Małaczewska J, Wójcik R, Rękawek W, Siwicki A. Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. J Dairy Sci. 2017;100(8):6442–6453. doi:10.3168/jds.2017-12660
  • Huys G, D’Haene K, Collard J-M, Swings J. Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl Environ Microbiol. 2004;70(3):1555–1562. doi:10.1128/AEM.70.3.1555-1562.2004
  • Arias CA, Contreras GA, Murray BE. Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect. 2010;16(6):555–562. doi:10.1111/j.1469-0691.2010.03214.x
  • Lebreton F, van Schaik W, Manson McGuire A, et al. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio. 2013;4(4):e00534–13. doi:10.1128/mBio.00534-13
  • Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect. 2010;16(6):541–554. doi:10.1111/j.1469-0691.2010.03226.x
  • Manson AL, Van Tyne D, Straub TJ, et al. Chicken meat-associated enterococci: influence of agricultural antibiotic use and connection to the clinic. Appl Environ Microbiol. 2019;85(22):e01559–19. doi:10.1128/AEM.01559-19
  • Chajęcka-Wierzchowska W, Zarzecka U, Zadernowska A. Enterococci isolated from plant-derived food-analysis of antibiotic resistance and the occurrence of resistance genes. LWT. 2021;139:110549. doi:10.1016/j.lwt.2020.110549
  • Pezzella C, Ricci A, DiGiannatale E, Luzzi I, Carattoli A. Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob Agents Chemother. 2004;48(3):903–908. doi:10.1128/AAC.48.3.903-908.2004
  • Bolinger H, Kathariou S, Schaffner DW. The current state of macrolide resistance in Campylobacter spp.: trends and impacts of resistance mechanisms. Appl Environ Microbiol. 2017;83(12):e00416–17. doi:10.1128/AEM.00416-17
  • Chen W, Huang Y, Jiao X, Ye J, Lin Y, Yao F. Loss of erm (B)-mediated rRNA dimethylation and restoration of erythromycin susceptibility in erythromycin-resistant enterococci following induced linezolid resistance. Microb Drug Resist. 2023;29(2):51–58. doi:10.1089/mdr.2022.0140
  • Liu M, Douthwaite S. Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA. Antimicrob Agents Chemother. 2002;46(6):1629–1633. doi:10.1128/AAC.46.6.1629-1633.2002
  • Brenciani A, Bacciaglia A, Vecchi M, Vitali LA, Varaldo PE, Giovanetti E. Genetic elements carrying erm (B) in Streptococcus pyogenes and association with tet (M) tetracycline resistance gene. Antimicrob Agents Chemother. 2007;51(4):1209–1216. doi:10.1128/AAC.01484-06
  • Schwaiger K, Harms K, Hölzel C, Meyer K, Karl M, Bauer J. Tetracycline in liquid manure selects for co-occurrence of the resistance genes tet (M) and tet (L) in Enterococcus faecalis. Vet Microbiol. 2009;139(3–4):386–392. doi:10.1016/j.vetmic.2009.06.005
  • Channaiah LH, Subramanyam B, Zurek L. Molecular characterization of antibiotic resistant and potentially virulent enterococci isolated from swine farms and feed mills. J Stored Prod Res. 2018;77:189–196. doi:10.1016/j.jspr.2018.04.007
  • Hammad AM, Shimamoto T, Shimamoto T. Genetic characterization of antibiotic resistance and virulence factors in Enterococcus spp. from Japanese retail ready-to-eat raw fish. Food Microbiol. 2014;38:62–66. doi:10.1016/j.fm.2013.08.010
  • Singh KV, Nallapareddy SR, Sillanpää J, Murray BE. Importance of the collagen adhesin ace in pathogenesis and protection against Enterococcus faecalis experimental endocarditis. PLoS Pathogens. 2010;6(1):e1000716. doi:10.1371/annotation/1ccae8f8-d274-4ff8-a295-815037ce9cc6
  • Stępień-Pyśniak D, Hauschild T, Kosikowska U, Dec M, Urban-Chmiel R. Biofilm formation capacity and presence of virulence factors among commensal Enterococcus spp. from wild birds. Sci Rep. 2019;9(1):1–7. doi:10.1038/s41598-019-47602-w
  • Martín I, Barbosa J, Pereira SI, Rodríguez A, Córdoba JJ, Teixeira P. Study of lactic acid bacteria isolated from traditional ripened foods and partial characterization of their bacteriocins. LWT. 2023;173:114300. doi:10.1016/j.lwt.2022.114300
  • Kongsted H, Pedersen K, Hjulsager CK, et al. Diarrhoea in neonatal piglets: a case control study on microbiological findings. Porcine Health Manage. 2018;4(1):1–7. doi:10.1186/s40813-018-0094-5
  • Oruc O, Cetin O, Darilmaz DO, Yüsekdag ZN. Determination of the biosafety of potential probiotic Enterococcus faecalis and Enterococcus faecium strains isolated from traditional white cheeses. LWT. 2021;148:111741. doi:10.1016/j.lwt.2021.111741
  • Soares RO, Fedi AC, Reiter KC, Caierão J, d’Azevedo PA. Correlation between biofilm formation and gelE, esp, and agg genes in Enterococcus spp. clinical isolates. Virulence. 2014;5(5):634–637. doi:10.4161/viru.28998
  • Chajęcka-Wierzchowska W, Zadernowska A, Łaniewska-Trokenheim Ł. Virulence factors, antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from retail shrimps. LWT Food Sci Technol. 2016;69:117–122. doi:10.1016/j.lwt.2016.01.034
  • Franz CM, Huch M, Abriouel H, Holzapfel W, Gálvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol. 2011;151(2):125–140. doi:10.1016/j.ijfoodmicro.2011.08.014
  • El‐Ghaish S, Khalifa M, Elmahdy A. Antimicrobial impact for Lactococcus lactis subsp. lactis A15 and Enterococcus faecium A15 isolated from some traditional Egyptian dairy products on some pathogenic bacteria. J Food Biochem. 2017;41(1):e12279. doi:10.1111/jfbc.12279
  • Bennett RJ, Dunny GM. Analogous telesensing pathways regulate mating and virulence in two opportunistic human pathogens. Mbio. 2010;1(4):e00181–10. doi:10.1128/mBio.00181-10
  • Dunny GM. Enterococcal sex pheromones: signaling, social behavior, and evolution. Ann Rev Genet. 2013;47(1):457–482. doi:10.1146/annurev-genet-111212-133449
  • Duan Y, Llorente C, Lang S, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature. 2019;575(7783):505–511. doi:10.1038/s41586-019-1742-x
  • Jett B, Jensen H, Nordquist R, Gilmore M. Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect Immun. 1992;60(6):2445–2452. doi:10.1128/iai.60.6.2445-2452.1992
  • Franz CM, Muscholl-Silberhorn AB, Yousif NM, Vancanneyt M, Swings J, Holzapfel WH. Incidence of virulence factors and antibiotic resistance among enterococci isolated from food. Appl Environ Microbiol. 2001;67(9):4385–4389. doi:10.1128/AEM.67.9.4385-4389.2001
  • Mundy L, Sahm D, Gilmore M. Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev. 2000;13(4):513–522. doi:10.1128/CMR.13.4.513
  • Hammad AM, Hassan HA, Shimamoto T. Prevalence, antibiotic resistance and virulence of Enterococcus spp. in Egyptian fresh raw milk cheese. Food Control. 2015;50:815–820. doi:10.1016/j.foodcont.2014.10.020
  • Semedo T, Almeida Santos M, Martins P, et al. Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J Clin Microbiol. 2003;41(6):2569–2576. doi:10.1128/JCM.41.6.2569-2576.2003
  • Bebien M, Hensler ME, Davanture S, et al. The pore-forming toxin β hemolysin/cytolysin triggers p38 MAPK-dependent IL-10 production in macrophages and inhibits innate immunity. PLoS Pathogens. 2012;8(7):e1002812. doi:10.1371/journal.ppat.1002812
  • Vankerckhoven V, Van Autgaerden T, Vael C, et al. Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol. 2004;42(10):4473–4479. doi:10.1128/JCM.42.10.4473-4479.2004
  • Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS, Tuomanen EI. Infection-derived Enterococcus faecalis strains are Enriched in esp, a gene encoding a novel surface protein. Infect Immun. 1999;67(1):193–200. doi:10.1128/IAI.67.1.193-200.1999
  • Gholizadeh P, Aghazadeh M, Ghotaslou R, et al. CRISPR-cas system in the acquisition of virulence genes in dental-root canal and hospital-acquired isolates of Enterococcus faecalis. Virulence. 2020;11(1):1257–1267. doi:10.1080/21505594.2020.1809329
  • Arciola CR, Baldassarri L, Campoccia D, et al. Strong biofilm production, antibiotic multi-resistance and high gelE expression in epidemic clones of Enterococcus faecalis from orthopaedic implant infections. Biomaterials. 2008;29(5):580–586. doi:10.1016/j.biomaterials.2007.10.008
  • Sifri CD, Mylonakis E, Singh KV, et al. Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect Immun. 2002;70(10):5647–5650. doi:10.1128/IAI.70.10.5647-5650.2002