0
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system

ORCID Icon, , , , ORCID Icon, , & ORCID Icon show all
Pages 3225-3240 | Received 25 May 2024, Accepted 17 Jul 2024, Published online: 25 Jul 2024

References

  • de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13(11):e1002184. doi:10.1371/journal.pmed.1002184
  • WHO global priority pathogens list of antibiotic-resistant bacteria - Combat AMR. Available from: https://www.combatamr.org.au/news-events/who-global-priority-pathogens-list-of-antibiotic-resistant-bacteria. Accessed August 24, 2023.
  • Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrob Resist. 2021;3(3):dlab092. doi:10.1093/jacamr/dlab092
  • Patel HB, Lusk KA, Cota JM. The role of cefepime in the treatment of extended-spectrum beta-lactamase infections. J Pharm Pract. 2019;32(4):458–463. doi:10.1177/0897190017743134
  • Gniadkowski M. Evolution and epidemiology of extended-spectrum β-lactamases (ESBLs) and ESBL-producing microorganisms. Clin Microbiol Infect. 2001;7(11):597–608. doi:10.1046/j.1198-743x.2001.00330.x
  • ESBL-producing Enterobacterales | HAI | CDC; 2021. Available from: https://www.cdc.gov/hai/organisms/ESBL.html. Accessed October 16, 2023.
  • Chen Y, Liu Z, Zhang Y, Zhang Z, Lei L, Xia Z. Increasing prevalence of esbl-producing multidrug resistance Escherichia coli from diseased pets in Beijing, china from 2012 to 2017. Front Microbiol. 2019;10:2852. doi:10.3389/fmicb.2019.02852
  • Nikaido H. Multidrug Resistance in Bacteria. Annu Rev Biochem. 2009;78(1):119–146. doi:10.1146/annurev.biochem.78.082907.145923
  • Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–976. doi:10.1128/AAC.01009-09
  • Al-khlifeh EM, Hassanat AB. Predicting the distribution patterns of antibiotic-resistant microorganisms in the context of Jordanian cases using machine learning techniques. J Appl Pharm Sci. 2024;14(6):174–183. doi:10.7324/JAPS.2024.177584
  • Chen Y, Chen X, Liang Z, et al. Epidemiology and prediction of multidrug-resistant bacteria based on hospital level. J Glob Antimicrob Resist. 2022;29:155–162. doi:10.1016/j.jgar.2022.03.003
  • Cánovas-Segura B, Campos M, Morales A, Juarez JM, Palacios F. Development of a clinical decision support system for antibiotic management in a hospital environment. Prog Artif Intell. 2016;5(3):181–197. doi:10.1007/s13748-016-0089-x
  • Moran E, Robinson E, Green C, Keeling M, Collyer B. Towards personalized guidelines: using machine-learning algorithms to guide antimicrobial selection. J Antimicrob Chemother. 2020;75(9):2677–2680. doi:10.1093/jac/dkaa222
  • Feucherolles M, Nennig M, Becker SL, et al. Combination of MALDI-TOF mass spectrometry and machine learning for rapid antimicrobial resistance screening: the case of campylobacter spp. Front Microbiol. 2022;12:804484. doi:10.3389/fmicb.2021.804484
  • Lechowicz L, Urbaniak M, Adamus-Białek W, Kaca W. The use of infrared spectroscopy and artificial neural networks for detection of uropathogenic Escherichia coli strains’ susceptibility to cephalothin. Acta Biochim Pol. 2013;60(4):713–718.
  • Faron ML, Buchan BW, Hyke J, et al. Multicenter evaluation of the bruker maldi biotyper CA system for the identification of clinical aerobic Gram-negative bacterial isolates. PLoS One. 2015;10(11):e0141350. doi:10.1371/journal.pone.0141350
  • Huang L, Tang J, Chen S, Ding C, Luo B. an efficient algorithm for feature selection with feature correlation. In: Yang J, Fang F, Sun C editors. Intelligent Science and Intelligent Data Engineering. Lecture Notes in Computer Science. Springer; 2013:639–646. doi:10.1007/978-3-642-36669-7_78.
  • Wojtas MA, Chen K Feature importance ranking for deep learning. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. NIPS’20. Curran Associates Inc.; 2020:5105–5114.
  • Krzywinski M, Altman N. Classification and regression trees. Nature Methods. 2017;14(8):757–758. doi:10.1038/nmeth.4370
  • Izenman AJ. Linear discriminant analysis. In: Izenman AJ editor. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. Springer Texts in Statistics. Springer; 2008:237–280. doi:10.1007/978-0-387-78189-1_8.
  • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–297. doi:10.1007/BF00994018
  • Tian Y, Shu M, Jia Q. Artificial neural network. In: Daya sagar BS, Cheng Q, McKinley J, Agterberg F editors. Encyclopedia of Mathematical Geosciences. Encyclopedia of Earth Sciences Series. Springer International Publishing; 2020:1–4. doi:10.1007/978-3-030-26050-7_44-1.
  • Mucherino A, Papajorgji PJ, Pardalos PM. k-nearest neighbor classification. In: Mucherino A, Papajorgji PJ, Pardalos PM editors. Data Mining in Agriculture. Springer Optimization and Its Applications. Springer; 2009:83–106. doi:10.1007/978-0-387-88615-2_4.
  • Max K. Building predictive models in r using the caret package. J Stat Softw. 2008;28. doi:10.18637/jss.v028.i05
  • Muallem A, Shetty S, Pan JW, Zhao J, Biswal B. hoeffding tree algorithms for anomaly detection in streaming datasets: a survey. JIS. 2017;08(04):339–361. doi:10.4236/jis.2017.84022
  • Wang LM, Li XL, Cao CH, Yuan SM. Combining decision tree and naive bayes for classification. Knowledge-Based Syst. 2006;19(7):511–515. doi:10.1016/j.knosys.2005.10.013
  • Alkhawaldeh I, Al-Jafari M, Abdelgalil M, Tarawneh A, Hassanat A. A machine learning approach for predicting bone metastases and its three-month prognostic risk factors in hepatocellular carcinoma patients using SEER data. Ann Oncol. 2023;34:140. doi:10.1016/j.annonc.2023.04.414
  • Hassanat AB, Tarawneh AS, Abed SS, Altarawneh GA, Alrashidi M, Alghamdi M. RDPVR: random data partitioning with voting rule for machine learning from class-imbalanced datasets. Electronics. 2022;11(2):228. doi:10.3390/electronics11020228
  • Hassanat A, Altarawneh G, Alkhawaldeh IM, et al. The jeopardy of learning from over-sampled class-imbalanced medical datasets. In: 2023 IEEE Symposium on Computers and Communications (ISCC).; 2023:1–7. doi:10.1109/ISCC58397.2023.10218211.
  • Hassanat A, Alkafaween E, Tarawneh AS, Elmougy S Applications review of hassanat distance metric. In: 2022 International Conference on Emerging Trends in Computing and Engineering Applications (ETCEA).; 2022:1–6. doi:10.1109/ETCEA57049.2022.10009844.
  • Paterson DL, Bonomo RA. Extended-Spectrum β-Lactamases: a Clinical Update. Clin Microbiol Rev. 2005;18(4):657–686. doi:10.1128/CMR.18.4.657-686.2005
  • Yoon EJ, Jeong SH. Class D β-lactamases. J Antimicrob Chemother. 2021;76(4):836–864. doi:10.1093/jac/dkaa513
  • Guideline: Wayne, PA: clinical and Laboratory Standards. - Google Scholar. Available from: https://scholar.google.com/scholar_lookup?title=Wayne+PA:+Clinical+and+Laboratory+Standards+Institute&publication_year=2009&. Accessed October 17, 2023.
  • Karaiskos I, Giamarellou H. Carbapenem-sparing strategies for ESBL producers: when and how. Antibiotics. 2020;9(2):61. doi:10.3390/antibiotics9020061
  • Shi HJ, Wee JH, Eom JS. Challenges to early discharge of patients with upper urinary tract infections by esbl producers: tmp/smx as a step-down therapy for shorter hospitalization and lower costs. Infect Drug Resist. 2021;14:3589–3597. doi:10.2147/IDR.S321888
  • Schober P, Vetter TR. Logistic regression in medical research. Anesth Analg. 2021;132(2):365–366. doi:10.1213/ANE.0000000000005247
  • Mwakyoma AA, Kidenya BR, Minja CA, et al. Allele distribution and phenotypic resistance to ciprofloxacin and gentamicin among extended-spectrum β-lactamase-producing Escherichia coli isolated from the urine, stool, animals, and environments of patients with presumptive urinary tract infection in Tanzania. Front Antibiot. 2023;2:1164016
  • Johnson TJ, Hargreaves M, Shaw K, et al. Complete genome sequence of a carbapenem-resistant extraintestinal pathogenic Escherichia coli strain belonging to the sequence type 131 h30r subclade. Genome Announc. 2015;3(2). doi:10.1128/genomea.00272-15
  • Wiener ES, Heil EL, Hynicka LM, Johnson JK. Are fluoroquinolones appropriate for the treatment of extended-spectrum β-lactamase-producing gram-negative bacilli? J Pharm Technol. 2016;32(1):16–21. doi:10.1177/8755122515599407
  • Seyedjavadi SS, Goudarzi M, Sabzehali F. Relation between blaTEM, blaSHV and blaCTX-M genes and acute urinary tract infections. J Acute Dis. 2016;5(1):71–76. doi:10.1016/j.joad.2015.07.007
  • Deku JG, Duedu KO, Ativi E, Kpene GE, Feglo PK. Occurrence and distribution of extended-spectrum β-lactamase in clinical Escherichia coli isolates at ho teaching hospital in Ghana. Ghana Med J. 2021;55(4):298–307. doi:10.4314/gmj.v55i4.11
  • Garcia A, Delorme T, Nasr P. Patient age as a factor of antibiotic resistance in methicillin-resistant Staphylococcus aureus. J Med Microbiol. 2017;66(12):1782–1789. doi:10.1099/jmm.0.000635
  • Abdelmalek S, AlEjielat R, Rayyan WA, Qinna N, Darwish D. Changes in public knowledge and perceptions about antibiotic use and resistance in Jordan: a cross-sectional eight-year comparative study. BMC Public Health. 2021;21(1):750. doi:10.1186/s12889-021-10723-x
  • Gin A, Dilay L, Karlowsky JA, Walkty A, Rubinstein E, Zhanel GG. Piperacillin-tazobactam: a beta-lactam/beta-lactamase inhibitor combination. Expert Rev Anti Infect Ther. 2007;5(3):365–383. doi:10.1586/14787210.5.3.365
  • Kuti JL, Wang Q, Chen H, Li H, Wang H, Nicolau DP. Defining the potency of amikacin against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii derived from Chinese hospitals using CLSI and inhalation-based breakpoints. Infect Drug Resist. 2018;11:783–790. doi:10.2147/IDR.S161636