42
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Distribution Patterns and Antibiotic Resistance Profiles of Bacterial Pathogens Among Patients with Wound Infections in the Jiaxing Region from 2021 to 2023

, , , &
Pages 2883-2896 | Received 23 May 2024, Accepted 02 Jul 2024, Published online: 09 Jul 2024

References

  • Hurlow J, Bowler PG. Acute and chronic wound infections: microbiological, immunological, clinical and therapeutic distinctions. J Wound Care. 2022;31(5):436–445. doi:10.12968/jowc.2022.31.5.436
  • Dissemond J. Diagnostik und Therapie lokaler Wundinfektionen. Zeitschrift für Gerontologie und Geriatrie. 2021;56(1):48–52. doi:10.1007/s00391-021-01984-7
  • Wijesooriya LI, Waidyathilake D. Antimicrobial properties of nonantibiotic agents for effective treatment of localized wound infections: a minireview. Internat J Lower Extrem Wound. 2020;21(3):207–218. doi:10.1177/1534734620939748
  • Sen CK. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care. 2021;10(5):281–292. doi:10.1089/wound.2021.0026
  • Kadam S, Shahane K. Recent advances in non-conventional antimicrobial approaches for chronic wound biofilms: have we found the ‘chink in the armor’? Biomedicines. 2019;7(2). doi:10.3390/biomedicines7020035
  • Dove SL, Morgan SJ, Lippman SI, et al. Bacterial fitness in chronic wounds appears to be mediated by the capacity for high-density growth, not virulence or biofilm functions. PLOS Pathogens. 2019;15(3). doi:10.1371/journal.ppat.1007511
  • Fijan S, Frauwallner A, Langerholc T, et al. Efficacy of using probiotics with antagonistic activity against pathogens of wound infections: an integrative review of literature. Biomed Res. Int. 2019;2019:1–21. doi:10.1155/2019/7585486
  • Shariati A, Asadian E, Fallah F, et al. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant. Infect Drug Resist. 2019;12:2223–2235. doi:10.2147/idr.S213200
  • Taati Moghadam M, Khoshbayan A, Chegini Z, Farahani I, Shariati A. Bacteriophages, a new therapeutic solution for inhibiting multidrug-resistant bacteria causing wound infection: lesson from animal models and clinical trials. Drug Des Devel Ther. 2020;14:1867–1883. doi:10.2147/dddt.S251171
  • Kim SH, Lee JH, Kim SE, et al. Retrospective study of the efficacy of vascularized tissue transfer for treating antibiotic-resistant bacteria-infected wound. Medicine. 2021;100(23). doi:10.1097/md.0000000000025907
  • World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance, to Guide Research, Development And Strategies to Prevent and Control Antimicrobial Resistance. World Health Organization; 2024.
  • Chang Y, Li Y, Fan T, Jiang K, Lv J, Huang J. Pathogenic bacteria characteristics and drug resistance in acute, delayed, and chronic periprosthetic joint infection: a retrospective analysis of 202 patients. Int Wound J. 2023;20(8):3315–3323. doi:10.1111/iwj.14212
  • Guan H, Dong W, Lu Y, et al. Distribution and antibiotic resistance patterns of pathogenic bacteria in patients with chronic cutaneous wounds in China. Front Med. 2021:8. doi:10.3389/fmed.2021.609584
  • Chen T, Yu J, Ye J, et al. Infection characteristics and drug susceptibility of multidrug-resistant bacteria in patients with diabetic foot ulcers. Clin Lab. 2023;69(09/2023). doi:10.7754/Clin.Lab.2023.230309
  • Liang M, Liu Q, Rajakani K. Distribution and risk factors of multidrug-resistant bacteria infection in orthopedic patients. J Healthcare Engine. 2022;2022:1–5. doi:10.1155/2022/2114661
  • Leber AL, ed. Clinical Microbiology Procedures Handbook. 4th ed. Washington, DC: American Society for Microbiology; 2016.
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x
  • Brocke T, Barr J. The history of wound healing. Surg Clin North Am. 2020;100(4):787–806. doi:10.1016/j.suc.2020.04.004
  • Freedman BR, Hwang C, Talbot S, Hibler B, Matoori S, Mooney DJ. Breakthrough treatments for accelerated wound healing. Sci Adv. 2023;9(20):eade7007. doi:10.1126/sciadv.ade7007
  • Guest JF, Ayoub N, McIlwraith T, et al. Health economic burden that different wound types impose on the UK’s national health service. Int Wound J. 2017;14(2):322–330. doi:10.1111/iwj.12603
  • Cheng B, Jiang Y, Fu X, et al. Epidemiological characteristics and clinical analyses of chronic cutaneous wounds of inpatients in China: prevention and control. Wound Repair Regen. 2020;28(5):623–630. doi:10.1111/wrr.12825
  • Bandy A, Wani FA, Mohammed AH, et al. Bacteriological profile of wound infections and antimicrobial resistance in selected gram-negative bacteria. Afr Health Sci. 2022;22(4):576–586. doi:10.4314/ahs.v22i4.63
  • Sharara SL, Maragakis LL, Cosgrove SE. Decolonization of Staphylococcus aureus. Infect Dis Clin North Am. 2021;35(1):107–133. doi:10.1016/j.idc.2020.10.010
  • Hobbs MR, Grant CC, Thomas MG, et al. Staphylococcus aureus colonisation and its relationship with skin and soft tissue infection in New Zealand children. Eur J Clin Microbiol Infect Dis. 2018;37(10):2001–2010. doi:10.1007/s10096-018-3336-1
  • Petry V, Lipnharski C, Bessa GR, et al. Prevalence of community-acquired methicillin-resistant Staphylococcus aureus and antibiotic resistance in patients with atopic dermatitis in Porto Alegre, Brazil. Int J Dermatol. 2014;53(6):731–735. doi:10.1111/ijd.12020
  • Shahmohammadi MR, Nahaei MR, Akbarzadeh A, Milani M. Clinical test to detect mecA and antibiotic resistance in Staphylococcus aureus, based on novel biotechnological methods. Artif Cells Nanomed Biotechnol. 2016;44(6):1464–1468. doi:10.3109/21691401.2015.1041639
  • da Silva RAG, Tay WH, Ho FK, et al. Enterococcus faecalis alters endo-lysosomal trafficking to replicate and persist within mammalian cells. PLoS Pathog. 2022;18(4):e1010434. doi:10.1371/journal.ppat.1010434
  • Ş M G, Dağı H T, Kara F, Arslan U, Fındık D. Investigation of antibiotic resistance and virulence factors of enterococcus faecium and enterococcus faecalis strains isolated from clinical samples. Mikrobiyol Bul. 2020;54(1):26–39. doi:10.5578/mb.68810
  • Șchiopu P, Toc DA, Colosi IA, et al. An overview of the factors involved in biofilm production by the enterococcus genus. Int J Mol Sci. 2023;24(14):11577. doi:10.3390/ijms241411577
  • Morand A, Morand JJ. Pseudomonas aeruginosa en dermatologie. Ann Dermatol Venereol. 2017;144(11):666–675. French. doi:10.1016/j.annder.2017.06.015
  • Akinloye AO, Adefioye JO, Adekunle CO, et al. Multidrug-resistance genes in pseudomonas aeruginosa from wound infections in a tertiary health institution in Osogbo, Nigeria. Infect Disord Drug Targets. 2021;21(1):90–98. doi:10.2174/1871526520666200117112241
  • Guo H, Song Q, Mei S, Xue Z, Li J, Ning T. Distribution of multidrug-resistant bacterial infections in diabetic foot ulcers and risk factors for drug resistance: a retrospective analysis. PeerJ. 2023;11:e16162. doi:10.7717/peerj.16162
  • Jian Z, Zeng L, Xu T, et al. Antibiotic resistance genes in bacteria: occurrence, spread, and control. J Basic Microbiol. 2021;61(12):1049–1070. doi:10.1002/jobm.202100201
  • Dong XM, Pei LL, Lu PS, Ni P, Yu BF, Fan ZQ. Bacteriological Investigation and drug resistance analysis of chronic refractory wound secretions. J Craniofac Surg. 2022;33(7):2028–2030. doi:10.1097/SCS.0000000000008473
  • Bazaid AS, Aldarhami A, Bokhary NA, et al. Prevalence and risk factors associated with drug resistant bacteria in neonatal and pediatric intensive care units: a retrospective study in Saudi Arabia. Medicine. 2023;102(42):e35638. doi:10.1097/MD.0000000000035638
  • Maina JW, Onyambu FG, Kibet PS, Musyoki AM. Multidrug-resistant Gram-negative bacterial infections and associated factors in a Kenyan intensive care unit: a cross-sectional study. Ann Clin Microbiol Antimicrob. 2023;22(1):85. doi:10.1186/s12941-023-00636-5
  • Cleland H, Tracy LM, Padiglione A, Stewardson AJ. Patterns of multidrug resistant organism acquisition in an adult specialist burns service: a retrospective review. Antimicrob Resist Infect Control. 2022;11(1):82. doi:10.1186/s13756-022-01123-w
  • Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics. 2020;9(3). doi:10.3390/antibiotics9030119
  • Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, et al. Acinetobacter baumannii resistance: a real challenge for clinicians. Antibiotics. 2020;9(4). doi:10.3390/antibiotics9040205
  • Xia W, He W, Luo T, Tang N. Risk factors for multidrug-resistant bacterial infections in patients with diabetic foot ulcers: a systematic review and meta-analysis. Ann Palliat Med. 2021;10(12):12618–12630. doi:10.21037/apm-21-3406
  • Bartal C, Rolston KVI, Nesher L. Carbapenem-resistant Acinetobacter baumannii: colonization, infection and current treatment options. Infect Dis Ther. 2022;11(2):683–694. doi:10.1007/s40121-022-00597-w
  • Mea HJ, Yong PVC, Wong EH. An overview of Acinetobacter baumannii pathogenesis: motility, adherence and biofilm formation. Microbiol Res. 2021;247:126722. doi:10.1016/j.micres.2021.126722