329
Views
6
CrossRef citations to date
0
Altmetric
Review

Potential of next-generation sequencing to match blood group antigens for transfusion

, &
Pages 11-22 | Published online: 03 Sep 2019

References

  • Klein HG, Anstee DJ. Haemolytic transfusion reactions. In: Mollison’s Blood Transfusion in Clinical Medicine. 11th ed. Oxford UK: Blackwell Publishing Ltd; 2005:455–495.
  • Zimring JC, Welniak L, Semple JW, et al. Current problems and future directions of transfusion-induced alloimmunization: summary of an NHLBI working group. Transfusion. 2011;51(2):435–441. doi:10.1111/j.1537-2995.2010.03024.x
  • Storry JR, Clausen FB, Castilho L, et al. International society of blood transfusion working party on red cell immunogenetics and blood group terminology: report of the Dubai, Copenhagen and Toronto meetings. Vox Sang. 2019;114(1):95–102. doi:10.1111/vox.12717
  • Wikman A, Mörtberg A, Sachs UJ, Santoso S. Report on the 18th Platelet Immunology Workshop of the ISBT 2016. ISBT Sci Ser. 2017;12(1):214–222. doi:10.1111/voxs.12336
  • Garratty G. What is a clinically significant antibody? ISBT Sci Ser. 2012;7:54–57. doi:10.1111/j.1751-2824.2012.01594.x
  • Tormey CA, Hendrickson JE. Transfusion-related red blood cell alloantibodies: induction and consequences. Blood. 2019;133(17):1821–1830. doi:10.1182/blood-2018-08-833962
  • Available from: https://www.shotuk.org/wp-content/uploads/myimages/SHOT-Report-2017-WEB-Final-v4-25-9-18.pdf. Accessed July 30, 2019.
  • Yazdanbakhsh K, Ware RE, Noizat-Pirenne F. Red blood cell alloimmunization in sickle cell disease: pathophysiology, risk factors, and transfusion management. Blood. 2012;120(3):528–537. doi:10.1182/blood-2011-11-327361
  • Hendrickson JE, Tormey CA, Shaz BH. Red blood cell alloimmunization mitigation strategies. Transfus Med Rev. 2014;28(3):137–144. doi:10.1016/j.tmrv.2014.04.008
  • ST C, Jackson T, Vege S, Smith-Whitley K, Friedman DF, Westhoff CM. High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors. Blood. 2013;122(6):1062–1071. doi:10.1182/blood-2013-03-490623
  • Fasano RM, Chou ST. Red blood cell antigen genotyping for sickle cell disease, thalassemia, and other transfusion complications. Transfus Med Rev. 2016;30(4):197–201. doi:10.1016/j.tmrv.2016.05.011
  • Zheng Y, Maitta RW. Alloimmunisation rates of sickle cell disease patients in the United States differ from those in other geographical regions. Transfus Med. 2016;26(3):225–230. doi:10.1111/tme.12314
  • MEM Y, Josephson CD, Winkler AM, et al. Red blood cell minor antigen mismatches during chronic transfusion therapy for sickle cell anemia. Transfusion. 2017;57(11):2738–2746. doi:10.1111/trf.14282
  • O’Suoji C, Liem RI, Mack AK, et al. Alloimmunization in sickle cell anemia in the era of extended red cell typing. Pediatr Blood Cancer. 2013;60:1487–1491. doi:10.1002/pbc.24530
  • Available from: https://www.transfusionguidelines.org/transfusion-handbook. Accessed July 30, 2019.
  • Belsito A, Costa D, Signoriello S, et al. Clinical outcome of transfusions with extended red blood cell matching in β-thalassemia patients: a single-center experience. Transfus Apher Sci. 2019;58(1):65–71. doi:10.1016/j.transci.2018.11.006
  • Ambruso DR. Transfusion complications in thalassemias. Transfusion. 2014;54(4):957–959. doi:10.1111/trf.12576
  • Matteocci A, Pierelli L. Red blood cell alloimmunization in sickle cell disease and in thalassaemia: current status, future perspectives and potential role of molecular typing. Vox Sang. 2014;106(3):197–208. doi:10.1111/vox.12086
  • Wahl SK, Garcia A, Hagar W, Gildengorin G, Quirolo K, Vichinsky E. Lower alloimmunization rates in pediatric sickle cell patients on chronic erythrocytapheresis compared to chronic simple transfusions. Transfusion. 2012;52(12):2671–2676. doi:10.1111/j.1537-2995.2012.03659.x
  • Westhoff CM. Blood group genotyping. Blood. 2019;133(17):1814–1820. doi:10.1182/blood-2018-11-833954
  • Wheeler MM, Johnsen JM. The role of genomics in transfusion medicine. Curr Opin Hematol. 2018;25(6):509–515. doi:10.1097/MOH.0000000000000469
  • Khan J, Delaney M. Transfusion support of minority patients: extended antigen donor typing and recruitment of minority blood donors. Transfus Med Hemother. 2018;45(4):271–276. doi:10.1159/000491883
  • Kulkarni S, Choudhary B, Gogri H, et al. Molecular genotyping of clinically important blood group antigens in patients with thalassaemia. Indian J Med Res. 2018;148(6):713–720. doi:10.4103/ijmr.IJMR_455_17
  • Belsito A, Magnussen K, Napoli C. Emerging strategies of blood group genotyping for patients with hemoglobinopathies. Transfus Apher Sci. 2017;56(2):206–213. doi:10.1016/j.transci.2016.11.007
  • Denomme GA, Anani WQ, Avent ND, et al. Red cell genotyping precision medicine: a conference summary. Ther Adv Hematol. 2017;8(10):277–291. doi:10.1177/2040620717729128
  • Reid ME, Lomas-Francis C, Olsson ML. The Blood Group Antigen Factbook. 3rd ed. San Diego: Academic Press; 2013.
  • Daniels G. Human Blood Groups. 3rd ed. Oxford: Wiley-Blackwell; 2013.
  • Raud L, Férec C, Fichou Y. From genetic variability to phenotypic expression of blood group systems. Transfus Clin Biol. 2017;24(4):472–475. doi:10.1016/j.tracli.2017.06.011
  • Singleton BK, Frayne J, Anstee DJ. Blood group phenotypes resulting from mutations in erythroid transcription factors. Curr Opin Hematol. 2012;19(6):486–493. doi:10.1097/MOH.0b013e328358f92e
  • Polin H, Pelc-Klopotowska M, Danzer M, et al. Compound heterozygosity of two novel RHAG alleles leads to a considerable disruption of the Rh complex. Transfusion. 2016;56(4):950–955. doi:10.1111/trf.13476
  • Available from: http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/. Accessed July 30, 2019.
  • Möller M, Jöud M, Storry JR, Olsson ML. Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 genomes project. Blood Adv. 2016;1(3):240–249. doi:10.1182/bloodadvances.2016001867
  • Belsito A, Costa D, Napoli C. Blood group genotyping for patients with autoimmune hemolytic anemia. Transl Res. 2014;164(2):177–178. doi:10.1016/j.trsl.2014.03.009
  • Svensson AM, Delaney M. Considerations of red blood cell molecular testing in transfusion medicine. Expert Rev Mol Diagn. 2015;15(11):1455–1464. doi:10.1586/14737159.2015.1086646
  • Shin KH, Lee HJ, Park KH, Hye BM, Chang CL, Kim HH. Extended red blood cell genotyping to investigate immunohematology problems. Ann Lab Med. 2018;38(4):387–388. doi:10.3343/alm.2018.38.4.387
  • McBean RS, Hyland CA, Flower RL. Blood group genotyping: the power and limitations of the Hemo ID Panel and MassARRAY platform. Immunohematology. 2015;31(2):75–80.
  • Molano A, Apraiz I, España P, et al. Performance evaluation study of ID RHD XT, a new genotyping assay for the detection of high-prevalence RhD negative and weak D types. Vox Sang. 2018;113(7):694–700. doi:10.1111/vox.12701
  • Jongruamklang P, Gassner C, Meyer S, et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of 36 blood group alleles among 396 Thai samples reveals region-specific variants. Transfusion. 2018;58(7):1752–1762. doi:10.1111/trf.14624
  • Finning K, Bhandari R, Sellers F, et al. Evaluation of red blood cell and platelet antigen genotyping platforms (ID CORE XT/ID HPA XT) in routine clinical practice. Blood Transfus. 2016;14(2):160–167. doi:10.2450/2015.0124-15
  • McBean RS, Hyland CA, Davis AC, et al. Blood group genotype analysis of Australian reagent red blood cell donors across three genotyping platforms: consistent detection of 70% phenotype genotype non concordance. ISBT Sci Ser. 2014;9(2):309–314. doi:10.1111/voxs.12166
  • Flegel WA, Gottschall JL, Denomme GA. Implementing mass-scale red cell genotyping at a blood center. Transfusion. 2015;55(11):2610–2615. doi:10.1111/trf.13168
  • Srivastava K, Stiles DA, Wagner FF, Flegel WA. Two large deletions extending beyond either end of the RHD gene and their red cell phenotypes. J Hum Genet. 2018;63(1):27–35. doi:10.1038/s10038-017-0345-3
  • Millard GM, Lopez GH, Turner EM, et al. Modified expression of the KEL2 (k) blood group antigen attributed to p.Leu196Val amino acid change three residues from the K/k antigen polymorphism site: implications for donor screening. Transfusion. 2019;59(3):1156–1158. doi:10.1111/trf.15106
  • Lopez GH, Turner RM, McGowan EC, et al. A DEL phenotype attributed to RHD Exon 9 sequence deletion: slipped-strand mispairing and blood group polymorphisms. Transfusion. 2018;58(3):685–691. doi:10.1111/trf.14439
  • Muzzey D, Evans EA, Lieber C. Understanding the basics of NGS: from mechanism to variant calling. Curr Genet Med Rep. 2015;3(4):158–165. doi:10.1007/s40142-015-0076-8
  • McBean RS, Hyland CA, Flower RL. Approaches to determination of a full profile of blood group genotypes: single nucleotide variant mapping and massively parallel sequencing. Comput Struct Biotechnol J. 2014;11(19):147–151. doi:10.1016/j.csbj.2014.09.009
  • 1000 Genomes Project Consortium; Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi:10.1038/nature15393
  • Schöfl G, Lang K, Quenzel P, et al. 2.7 million samples genotyped for HLA by next generation sequencing: lessons learned. BMC Genomics. 2017;18(1):161. doi:10.1186/s12864-016-3396-5
  • McBean RS, Hyland CA, Hendry JL, Shabani-Rad MT, Flower RL. SARA: a “new” low-frequency MNS antigen (MNS47) provides further evidence of the extreme diversity of the MNS blood group system. Transfusion. 2015;55(6 Pt 2):1451–1456. doi:10.1111/trf.12973
  • Cvejic A, Haer-Wigman L, Stephens JC, et al. SMIM1 underlies the Vel blood group and influences red blood cell traits. Nat Genet. 2013;45(5):542–545. doi:10.1038/ng.2603
  • Yahalom V, Pillar N, Zhao Y, et al. SMYD1 is the underlying gene for the AnWj-negative blood group phenotype. Eur J Haematol. 2018;101(4):496–501. doi:10.1111/ejh.13133
  • McBean R, Liew YW, Wilson B, et al. Genotyping confirms inheritance of the rare At(a-) type in a case of haemolytic disease of the newborn. J Pathol Clin Res. 2015;2(1):53–55. doi:10.1002/cjp2.33
  • Millard GM, McGowan EC, Wilson B, et al. A proposed new low-frequency antigen in the Augustine blood group system associated with a severe case of hemolytic disease of the fetus and newborn. Transfusion. 2018;58(5):1320–1322. doi:10.1111/trf.14562
  • Omae Y, Ito S, Takeuchi M, et al. Integrative genome analysis identified the KANNO blood group antigen as prion protein. Transfusion. 2019. Epub ahead of print. doi:10.1111/trf.15319
  • Yeh CC, Chang CJ, Twu YC, et al. The molecular genetic background leading to the formation of the human erythroid-specific Xga/CD99 blood groups. Blood Adv. 2018;2(15):1854–1864. doi:10.1182/bloodadvances.2018018879
  • Schoeman EM, Roulis EV, Liew YW, et al. Targeted exome sequencing defines novel and rare variants in complex blood group serology cases for a red blood cell reference laboratory setting. Transfusion. 2018;58(2):284–293. doi:10.1111/trf.14393
  • Jakobsen MA, Dellgren C, Sheppard C, Yazer M, Sprogøe U. The use of next-generation sequencing for the determination of rare blood group genotypes. Transfus Med. 2017. doi:10.1111/tme.12496
  • Wen J, Verhagen OJHM, Jia S, et al. A variant RhAG protein encoded by the RHAG*572A allele causes serological weak D expression while maintaining normal RhCE phenotypes. Transfusion. 2019;59(1):405–411. doi:10.1111/trf.14969
  • El Wafi M, El Housse H, Zaid N, et al. Novel intronic RHD variants identified in serologically D-negative blood donors. Vox Sang. 2017;112(8):796–802. doi:10.1111/vox.12570
  • Möller M, Hellberg Å, Olsson ML. Thorough analysis of unorthodox ABO deletions called by the 1000 Genomes project. Vox Sang. 2018;113(2):185–197. doi:10.1111/vox.12613
  • Montemayor-Garcia C, Karagianni P, Stiles DA, et al. Genomic coordinates and continental distribution of 120 blood group variants reported by the 1000 Genomes Project. Transfusion. 2018;58(11):2693–2704. doi:10.1111/trf.14953
  • Leffler EM, Band G, Busby GBJ, et al. Resistance to malaria through structural variation of red blood cell invasion receptors. Science. 2017;356:6343. doi:10.1126/science.aam6393
  • Fichou Y, Audrézet MP, Guéguen P, Le Maréchal C, Férec C. Next-generation sequencing is a credible strategy for blood group genotyping. Br J Haematol. 2014;167(4):554–562. doi:10.1111/bjh.13084
  • Orzińska A, Guz K, Mikula M, et al. A preliminary evaluation of next-generation sequencing as a screening tool for targeted genotyping of erythrocyte and platelet antigens in blood donors. Blood Transfus. 2018;16(3):285–292. doi:10.2450/2017.0253-16
  • Fox K, Johnsen JM, Coe BP, et al. Analysis of exome sequencing data sets reveals structural variation in the coding region of ABO in individuals of African ancestry. Transfusion. 2016;56(11):2744–2749. doi:10.1111/trf.13797
  • Lane WJ, Westhoff CM, Gleadall NS, et al. Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study. Lancet Haematol. 2018;5(6):e241–e251. doi:10.1016/S2352-3026(18)30053-X
  • Wu PC, Lin YH, Tsai LF, Chen MH, Chen PL, Pai SC. ABO genotyping with next-generation sequencing to resolve heterogeneity in donors with serology discrepancies. Transfusion. 2018;58(9):2232–2242. doi:10.1111/trf.14654
  • Lang K, Wagner I, Schöne B, et al. ABO allele-level frequency estimation based on population-scale genotyping by next generation sequencing. BMC Genomics. 2016;17:374. doi:10.1186/s12864-016-3328-4
  • Stabentheiner S, Danzer M, Niklas N, et al. Overcoming methodical limits of standard RHD genotyping by next-generation sequencing. Vox Sang. 2011;100(4):381–388. doi:10.1111/j.1423-0410.2010.01444.x
  • Schoeman EM, Lopez GH, McGowan EC, et al. Evaluation of targeted exome sequencing for 28 protein-based blood group systems, including the homologous gene systems, for blood group genotyping. Transfusion. 2017;57(4):1078–1088. doi:10.1111/trf.14054
  • Chou ST, Flanagan JM, Vege S, et al. Whole-exome sequencing for RH genotyping and alloimmunization risk in children with sickle cell anemia. Blood Adv. 2017;1(18):1414–1422. doi:10.1182/bloodadvances.2017007898
  • Wheeler MM, Lannert KW, Huston H, et al. Genomic characterization of the RH locus detects complex and novel structural variation in multi-ethnic cohorts. Genet Med. 2019;21(2):477–486. doi:10.1038/s41436-018-0074-9
  • Tounsi WA, Madgett TE, Avent ND. Complete RHD next-generation sequencing: establishment of reference RHD alleles. Blood Adv. 2018;2(20):2713–2723. doi:10.1182/bloodadvances.2018017871
  • Fichou Y, Mariez M, Le Maréchal C, Férec C. The experience of extended blood group genotyping by next-generation sequencing (NGS): investigation of patients with sickle-cell disease. Vox Sang. 2016;111(4):418–424. doi:10.1111/vox.12432
  • Boccoz SA, Fouret J, Roche M, et al. Massively parallel and multiplex blood group genotyping using next-generation-sequencing. Clin Biochem. 2018;60:71–76. doi:10.1016/j.clinbiochem.2018.07.010
  • Dezan MR, Ribeiro IH, Oliveira VB, et al. RHD and RHCE genotyping by next-generation sequencing is an effective strategy to identify molecular variants within sickle cell disease patients. Blood Cells Mol Dis. 2017;65:8–15. doi:10.1016/j.bcmd.2017.03.014
  • Quirino MG, Colli CM, Macedo LC, Sell AM, Visentainer JEL. Methods for blood group antigens detection: cost-effectiveness analysis of phenotyping and genotyping. Hematol Transfus Cell Ther. 2019;41(1):44–49. doi:10.1016/j.htct.2018.06.006
  • Schoeman EM, Roulis EV, Perry MA, Flower RL, Hyland CA. Comprehensive blood group antigen profile predictions for Western Desert Indigenous Australians from whole exome sequence data. Transfusion. 2019;59(2):768–778. doi:10.1111/trf.15047
  • Flores-Bello A, Mas-Ponte D, Rosu ME, Bosch E, Calafell F, Comas D. Sequence diversity of the Rh blood group system in Basques. Eur J Hum Genet. 2018;26(12):1859–1866. doi:10.1038/s41431-018-0232-1
  • Mazonson P, Efrusy M, Santas C, et al. The HI-STAR study: resource utilization and costs associated with serologic testing for antibody-positive patients at four United States medical centers. Transfusion. 2014;54(2):271–277. doi:10.1111/trf.12176
  • Portegys J, Rink G, Bloos P, Scharberg EA, Klüter H, Bugert P. Towards a regional registry of extended typed blood donors: molecular typing for blood group, platelet and granulocyte antigens. Transfus Med Hemother. 2018;45(5):331–340. doi:10.1159/000493555
  • Patel SR, Bennett A, Girard-Pierce K, et al. Recipient priming to one RBC alloantigen directly enhances subsequent alloimmunization in mice. Blood Adv. 2018;2(2):105–115. doi:10.1182/bloodadvances.2017010124
  • Orzińska A, Guz K, Mikula M, et al. Prediction of fetal blood group and platelet antigens from maternal plasma using next-generation sequencing. Transfusion. 2019;59(3):1102–1107. doi:10.1111/trf.15116
  • Scharberg E, Rink G, Portegys J, et al. The impact of using genotyped reagent red blood cells in antibody identification. Transfus Med Hemother. 2018;45(4):218–224. doi:10.1159/000491884
  • Hyland CA, Roulis EV, Schoeman EM. Developments beyond blood group serology in the genomics era. Br J Haematol. 2019;184(6):897–911. doi:10.1111/bjh.15747
  • Fichou Y, Férec C. NGS and blood group systems: state of the art and perspectives. Transfus Clin Biol. 2017;24(3):240–244. doi:10.1016/j.tracli.2017.06.002
  • Montemayor-Garcia C, Westhoff CM. The “next generation” reference laboratory? Transfusion. 2018;58(2):277–279. doi:10.1111/trf.14483
  • Flegel WA, Chen Q, Castilho L, et al. Molecular immunohaematology round table discussions at the AABB annual meeting, Orlando 2016. Blood Transfus. 2018;16(5):447–456. doi:10.2450/2018.0260-17
  • Anstee DJ. The relationship between blood groups and disease. Blood. 2010;115(23):4635–4643. doi:10.1182/blood-2010-01-261859
  • Lane WJ, Westhoff CM, Uy JM, et al. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle. Transfusion. 2016;56(3):743–754. doi:10.1111/trf.13416
  • Lane WJ, Aguad M, Smeland-Wagman R, et al. A whole genome approach for discovering the genetic basis of blood group antigens: independent confirmation for P1 and Xga. Transfusion. 2019;59(3):908–915. doi:10.1111/trf.15089