128
Views
5
CrossRef citations to date
0
Altmetric
Review

Facing Cell Autophagy in Gastric Cancer – What Do We Know so Far?

, &
Pages 1647-1659 | Published online: 03 May 2021

References

  • Fock KM. The epidemiology and prevention of gastric cancer. Aliment Pharmacol Ther. 2014;40(3):250–260. doi:10.1111/apt.12814
  • Yoon H, Kim N. Diagnosis and management of high risk group for gastric cancer. Gut Liver. 2015;9(1):5–17. doi:10.5009/gnl14118
  • Batista TP, Santos CA, Almeida GF. Perioperative chemotherapy in locally advanced gastric cancer. Arq Gastroenterol. 2013;50(3):236–242. doi:10.1590/S0004-28032013000200042
  • Shi WJ, Gao JB. Molecular mechanisms of chemoresistance in gastric cancer. World J Gastrointest Oncol. 2016;8(9):673–681. doi:10.4251/wjgo.v8.i9.673
  • Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9(10):1102–1109. doi:10.1038/ncb1007-1102
  • Nawrocki ST, Wang W, Carew JS. Autophagy: new insights into its roles in cancer progression and drug resistance. Cancers. 2020;12(10):3005. doi:10.3390/cancers12103005
  • Maiuri MC, Tasdemir E, Criollo A, et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 2009;16:87–93. doi:10.1038/cdd.2008.131
  • Botti J, Djavaheri-Mergny M, Pilatte Y, Codogno P. Autophagy signaling and the cogwheels of cancer. Autophagy. 2006;2:67–73. doi:10.4161/auto.2.2.2458
  • Jacob JA, Salmani JMM, Jiang Z, et al. Autophagy:an overview and its roles in cancer and obesity. Clin Chim Acta. 2017;468:85–89. doi:10.1016/j.cca.2017.01.028
  • Nakatogawa H, Lane JD. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem. 2013;55:39–50. doi:10.1042/bse0550039
  • Qu B, Yao L, Ma HL, et al. Prognostic significance of autophagy-related proteins expression in resected human gastric adenocarcinoma. J Huazhong Univ Sci Technolog Med Sci. 2017;37(1):37–43. doi:10.1007/s11596-017-1691-2
  • Cao QH, Liu F, Yang ZL, et al. Prognostic value of autophagy related proteins ULK1, Beclin 1, ATG3, ATG5, ATG7, ATG9, ATG10, ATG12, LC3B and p62/SQSTM1in gastric cancer. Am J Transl Res. 2016;8(9):3831–3847.
  • Hu YF, Lei X, Zhang HY, et al. Expressions and clinical significance of autophagy-related markers Beclin1, LC3, and EGFR in human cervical squamous cell carcinoma. Onco Targets Ther. 2015;8:2243–2249. doi:10.2147/OTT.S86844
  • Zheng Y, Tu J, Wang X, et al. The therapeutic effect of melatonin on GC by inducing cell apoptosis and autophagy induced by endoplasmic reticulum stress. Onco Targets Ther. 2019;12:10187–10198. doi:10.2147/OTT.S226140
  • Du Y, Ji X. Bcl-2 down-regulation by small interfering RNA induces Beclin1-dependent autophagy in human SGC-7901 cells. Cell Biol Int. 2014;38:1155–1162. doi:10.1002/cbin.10333
  • Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–752. doi:10.1038/nrm2239
  • Weng J, Xiao J, Mi Y, et al. PCDHGA9 acts as a tumor suppressor to induce tumor cell apoptosis and autophagy and inhibit the EMT process in human gastric cancer. Cell Death Dis. 2018;9(2). doi:10.1038/s41419-017-0189-y
  • Jung C, Ro S, Cao J, Otto N, Kim D. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287–1295. doi:10.1016/j.febslet.2010.01.017
  • Mirzoeva OK, Hann B, Hom YK, et al. Autophagy suppression promotes apoptotic cell death in response to inhibition of the PI3K-mTOR pathway in pancreatic adenocarcinoma. J Mol Med (Berl). 2011;89:877–889. doi:10.1007/s00109-011-0774-y
  • Wang Z-C, Huang F-Z, Xu H-B, et al. MicroRNA-137 inhibits autophagy and chemosensitizes pancreatic cancer cells by targeting ATG5. Int J Biochem Cell Biol. 2019;111:63–71. doi:10.1016/j.biocel.2019.01.020
  • Ge J, Chen Z, Huang J, et al. Upregulation of autophagy-related gene-5 (ATG-5) is associated with chemoresistance in human gastric cancer. PLoS One. 2014;9(10):e110293. doi:10.1371/journal.pone.0110293
  • Silberman A, Goldman O, Assayag OB, et al. Acid-induced downregulation of ASS1 contributes to the maintenance of intracellular pH in cancer. Cancer Res. 2019;79(3):518–533. doi:10.1158/0008-5472.CAN-18-1062
  • Huang HY, Wu WR, Wang YH. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance. Clin Cancer Res. 2013;19:2861–2872. doi:10.1158/1078-0432.CCR-12-2641
  • Allen MD, Luong P, Hudson C, et al. Prognostic and therapeutic impact of argininosuccinate synthetase 1 control in bladder cancer as monitored longitudinally by PET imaging. Cancer Res. 2014;74:896–907. doi:10.1158/0008-5472.CAN-13-1702
  • Kobayashi E, Masuda M, Nakayama R, et al. Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Mol Cancer Ther. 2010;9(3):535–544. doi:10.1158/1535-7163.MCT-09-0774
  • Tsai CY, Chi HC, Chi LM. Argininosuccinate synthetase 1 contributes to gastric cancer invasion and progression by modulating autophagy. THE FASEB Journal. 2018;32(5):2601–2614. doi:10.1096/fj.201700094r
  • Waby JS, Bingle CD, Corfe BM. Post-translational control of sp-family transcription factors. Curr Genomics. 2008;9(5):301–311. doi:10.2174/138920208785133244
  • Wang L, Wei D, Huang S, et al. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res. 2003;9(17):6371–6380.
  • Xu XW, Pan CW, Yang XM, et al. SP1 reduces autophagic flux through activating p62 in gastric cancer cells. Mol Med Rep. 2018;17(3):4633–4638. doi:10.3892/mmr.2018.8400
  • Yates LA, Norbury CJ, Gilbert RJC. The long and short of microRNA. Cell. 2013;153(3):516–519. doi:10.1016/j.cell.2013.04.003
  • Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–333. doi:10.1038/nrc3932
  • Song JH, Meltzer SJ. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology. 2012;143(1):35–47. doi:10.1053/j.gastro.2012.05.003
  • Boudeau J, Baas AF, Deak M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22(19):5102–5114. doi:10.1093/emboj/cdg490
  • Brajenovic M, Joberty G, Kuster B, Bouwmeester T, Drewes G. Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J Biol Chem. 2004;279:12804–12811. doi:10.1074/jbc.M312171200
  • Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2:28. doi:10.1186/1475-4924-2-28
  • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LGD. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003;13:2004–2008. doi:10.1016/j.cub.2003.10.031
  • Xu Z, Li Z, Wang W, Xia Y. MIR-1265 regulates cellular proliferation and apoptosis by targeting calcium binding protein 39 in gastric cancer and, thereby, impairing oncogenic autophagy. Cancer Lett. 2019;449:226–236. doi:10.1016/j.canlet.2019.02.026
  • Chen S, Wu J, Jiao K, et al. MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer. Cell Death Dis. 2018;9(11). doi:10.1038/s41419-018-0950-x
  • Yuan KT, Li BX, Yuan YJ, et al. Deregulation of microRNA-375 inhibits proliferation and migration in gastric cancer in association with autophagy-mediated AKT/mTOR signaling pathways. Technol Cancer Res Treat. 2018;17:153303381880649. doi:10.1177/1533033818806499
  • Gu Y, Fei Z, Zhu R. MiR-21 modulates cisplatin resistance of gastric cancer cells by inhibiting autophagy via the PI3K/Akt/mTOR pathway. Anticancer Drugs. 2020;31(4):385–393. doi:10.1097/CAD.0000000000000886
  • Tian L, Zhao Z, Xie L, Zhu J. MiR-361-5p suppresses chemoresistance of gastric cancer cells by targeting FOXM1 via the PI3K/Akt/mTOR pathway. Oncotarget. 2018;9(4):4886–4896. doi:10.18632/oncotarget.23513
  • Zhao J, Nie Y, Wang H, Lin Y. miR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene. 2016;576(2):828–833. doi:10.1016/j.gene.2015.11.013
  • Du X, Liu B, Luan X, et al. miR-30 decreases multidrug resistance in human gastric cancer cells by modulating cell autophagy. Exp Ther Med. 2018;15:599–605. doi:10.3892/etm.2017.5354
  • Fan H, Jiang M, Li B, et al. MicroRNA-let-7a regulates cell autophagy by targeting Rictor in gastric cancer cell lines MGC-803 and SGC-7901. Oncol Rep. 2018;39(3):1207–1214. doi:10.3892/or.2018.6194
  • Zhang X, Li Z, Xuan Z, et al. Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis. J Exp Clin Cancer Res. 2018;37(1). doi:10.1186/s13046-018-0993-y
  • Guo W, Chen Z, Chen Z, et al. Promotion of cell proliferation through inhibition of cell autophagy signalling pathway by Rab3IP is restrained by microRNA-532-3p in gastric cancer. J Cancer. 2018;9(23):4363–4373. doi:10.7150/jca.27533
  • Yin X, Cao L, Kang R, et al. UV irradiation resistance-associated gene suppresses apoptosis by interfering with BAX activation. EMBO Rep. 2011;12:727–734. doi:10.1038/embor.2011.79
  • Yuan Y, Zhang Y, Han L, et al. miR-183 inhibits autophagy and apoptosis in gastric cancer cells by targeting ultraviolet radiation resistance-associated gene. Int J Mol Med. 2018;42(6):3562–3570. doi:10.3892/ijmm.2018.3871
  • Li H, He C, Wang X. MicroRNA-183 affects the development of gastric cancer by regulating autophagy via MALAT1-miR-183-SIRT1 axis and PI3K/AKT/mTOR signals. Artif Cells Nanomed Biotechnol. 2019;47(1):3163–3171. doi:10.1080/21691401.2019.1642903
  • Xin L, Zhou LQ, Liu L, et al. METase promotes cell autophagy via promoting SNHG5 and suppressing miR-20a in gastric cancer. Int J Biol Macromol. 2019;122:1046–1052. doi:10.1016/j.ijbiomac.2018.09.051
  • Chen JF, Wu P, Xia R, et al. STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol Cancer. 2018;17(1). doi:10.1186/s12943-017-0756-y
  • Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29:653–668. doi:10.1016/j.ccell.2016.03.004
  • Fan Y, Shen B, Tan M, et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J. 2014;281:1750–1758. doi:10.1111/febs.12737
  • Özeş AR, Miller DF, Özeş ON, et al. NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene. 2016;35:5350–5361. doi:10.1038/onc.2016.75
  • Zheng J, Huang X, Tan W, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747–757. doi:10.1038/ng.3568
  • Ma MZ, Zhang Y, Weng M, et al. Long non-coding RNA GCASPC, a target of miR-17-3p, negatively regulates pyruvate carboxylase-dependent cell proliferation in gallbladder cancer. Cancer Res. 2016;76:5361–5371. doi:10.1158/0008-5472.CAN-15-3047
  • Wang SH, Zhang WJ, Xc W, et al. The lncRNA MALAT1 functions as a competing endogenous RNA to regulate MCL-1 expression by sponging miR-363-3p in gallbladder cancer. J Cell Mol Med. 2016;20:2299–2308. doi:10.1111/jcmm.12920
  • YiRen H, YingCong Y, Sunwu Y, et al. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol Cancer. 2017;16(1):1–12. doi:10.1186/s12943-017-0743-3
  • Zhu L, Zhu Y, Han S, et al. Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis. 2019;10(6). doi:10.1038/s41419-019-1585-2
  • Zhou J, Jiang YY, Chen H, et al. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif. 2020;53(2):e12739. doi:10.1111/cpr.12739
  • Wang J, Liang D, Zhang XP, et al. Novel PI3K/Akt/mTOR signaling inhibitor, W922, prevents colorectal cancer growth via the regulation of autophagy. Int J Oncol. 2021;58(1):70–82. doi:10.3892/ijo.2020.5151
  • Zheng W, Wu C, Wu X, et al. Genetic variants of autophagy-related genes in the PI3K/Akt/mTOR pathway and risk of gastric cancer in the Chinese population. Gene. 2021;769:145190. doi:10.1016/j.gene.2020.145190
  • Murakami D, Tsujitani S, Osaki T, et al. Expression of phosphorylated Akt(pAkt) in gastric carcinoma predicts prognosis and efficacy of chemotherapy. Gastric Cancer. 2007;10(1):45–51. doi:10.1007/s10120-006-0410-7
  • Yap T, Garrett M, Walton M, et al. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol. 2008;8(4):393–412. doi:10.1016/j.coph.2008.08.004
  • Raha S, Yumnam S, Hong GE, et al. Naringin induces autophagy-mediated growth inhibition by down-regulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int J Oncol. 2015;47(3):1061–1069. doi:10.3892/ijo.2015.3095
  • Guo F, Jiao D, Sui GQ, et al. Anticancer effect of YWHAZ silencing via inducing apoptosis and autophagy in gastric cancer cells. Neoplasma. 2018;65:693–700. doi:10.4149/neo_2018_170922N603
  • Hu XL, Zhu YJ, Hu CH, et al. Ghrelin affects gastric cancer progression by activating AMPK signaling pathway. Biochem Genet;2021:1–16. doi:10.1007/s10528-020-10010-1
  • Faubert B, Vincent EE, Poffenberger MC, et al. The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett. 2015;356:165–170. doi:10.1016/j.canlet.2014.01.018
  • Yu Z, Suosi L, Qin F, et al. Perilaldehyde activates AMP‐activated protein kinase to suppress the growth of gastric cancer via induction of autophagy. J Cell Biochem. 2019;120(2):1716–1725.
  • Pei G, Luo M, Ni X, et al. Autophagy facilitates metadherin-induced chemotherapy resistance through the AMPK/ATG5 pathway in gastric cancer. Cell Physiol Biochem. 2018;46(2):847–859. doi:10.1159/000488742
  • Piscione M, Mazzone M, Di Marcantonio MC, et al. Eradication of Helicobacter pylori and gastric cancer: a controversial relationship. Front Microbiol. 2021;12. doi:10.3389/fmicb.2021.630852
  • Díaz P, Valenzuela Valderrama M, Bravo J, et al. Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front Microbiol. 2018;9:5. doi:10.3389/fmicb.2018.00005
  • Yahiro K, Satoh M, Nakano M, et al. Low-density lipoprotein receptor-related protein-1 (LRP1) mediates autophagy and apoptosis caused by Helicobacter pylori VacA. J Biol Chem. 2012;287(37):31104–31115. doi:10.1074/jbc.M112.387498
  • Wang MY, Chen C, Gao XZ, et al. Distribution of Helicobacter pylori virulence markers in patients with gastroduodenal diseases in a region at high risk of gastric cancer. Microb Pathog. 2013;59:13–18. doi:10.1016/j.micpath.2013.04.001
  • Paik JY, Lee HG, Piao JY, et al. Helicobacter pylori infection promotes autophagy through Nrf2-mediated heme oxygenase upregulation in human gastric cancer cells. Biochem Pharmacol. 2019;162:89–97. doi:10.1016/j.bcp.2019.02.003
  • Liu X, Zheng Q, Yu Q, et al. Apatinib regulates the growth of gastric cancer cells by modulating apoptosis and autophagy. Naunyn Schmiedebergs Arch Pharmacol. 2020. doi:10.1007/s00210-020-02018-6
  • Hu S, Yin J, Yan S, et al. Chaetocochin J, an epipolythiodioxopiperazine alkaloid, induces apoptosis and autophagy in colorectal cancer via AMPK and PI3K/AKT/mTOR pathways. Bioorg Chem. 2021;109:104693. doi:10.1016/j.bioorg.2021.104693
  • Liu H, Song J, Zhou Y, et al. Methylxanthine derivatives promote autophagy in gastric cancer cells targeting PTEN. Anticancer Drugs. 2019;30(4):347–355. doi:10.1097/CAD.0000000000000724
  • Okada T, Yoshida H, Akazawa R, et al. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase(PERK) in transcription during the mammalian unfolded protein response. Biochem J. 2002;366:585–594. doi:10.1042/bj20020391
  • Peng X, Tu Y, Fu S, et al. 14-Deoxycoleon U-induced endoplasmic reticulum stress-mediated apoptosis, autophagy, and cell cycle arrest in lung adenocarcinoma. Onco Targets Ther. 2019;12:5955–5965. doi:10.2147/OTT.S211933
  • Bai XY, Liu YG, Song W, et al. Anticancer activity of tetrandrine by inducing pro-death apoptosis and autophagy in human gastric cancer cells. J Pharm Pharmacol. 2018;70(8):1048–1058. doi:10.1111/jphp.12935
  • Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8:931–937. doi:10.1038/nrm2245
  • Kumar A, Singh UK, Chaudhary A. Targeting autophagy to overcome drug resistance in cancer therapy. Future Med Chem. 2015;7:1535–1542. doi:10.4155/fmc.15.88
  • Belounis A, Nyalendo C, Le Gall R, et al. Autophagy is associated with chemoresistance in neuroblastoma. BMC Cancer. 2016;16(1). doi:10.1186/s12885-016-2906-9
  • Wu J, Yu J, Wang J, et al. Astragalus polysaccharide enhanced antitumor effects of Apatinib in gastric cancer AGS cells by inhibiting AKT signalling pathway. Biomed Pharmacother. 2018;100:176–183. doi:10.1016/j.biopha.2018.01.140
  • Xiong X, Lu B, Tian Q, et al. Inhibition of autophagy enhances cinobufagin‑induced apoptosis in gastric cancer. Oncol Rep. 2019;41(1):492–500. doi:10.3892/or.2018.6837
  • Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1–222.
  • Zhang BC, Zhang CW, Wang C, et al. Luteolin attenuates foam cell formation and apoptosis in Ox-LDL-stimulated macrophages by enhancing autophagy. J Am Coll Car- Diol. 2016;39:2065–2076.
  • Schonewolf CA, Mehta M, Schiff D, et al. Autophagy inhibition by chloroquine sensitizes HT-29 colorectal cancer cells to concurrent chemoradiation. World J Gastrointest Oncol. 2014;6(3):74–82. doi:10.4251/wjgo.v6.i3.74
  • Mauthe M, Orhon I, Rocchi C, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435–1455. doi:10.1080/15548627.2018.1474314
  • Li LQ, Pan D, Zhang SW, et al. Autophagy regulates chemoresistance of gastric cancer stem cells via the Notch signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22(11):3402–3407.
  • Li S, Li J, Shen C, et al. tert-Butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via inducing autophagy independently of Nrf2 activation. Biochim Biophys Acta. 2014;1841(1):22–33. doi:10.1016/j.bbalip.2013.09.004
  • Wang K, Du B, Xu B, et al. JMJD6-STAT3Y705ph axis promotes autophagy in osteosarcoma cancer cells by regulating ATG. BioFactors. 2020;46:839–848. doi:10.1002/biof.1614
  • Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006;8:1124–1132. doi:10.1038/ncb1482
  • Le CP, Nowell CJ, Kim-Fuchs C, et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun. 2016;7:10634. doi:10.1038/ncomms10634
  • Krizanova O, Babula P, Pacak K. Stress, catecholaminergic system and cancer. Stress. 2016;19:419–428. doi:10.1080/10253890.2016.1203415
  • Zhi X, Li B, Li Z, et al. Adrenergic modulation of AMPK‑dependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer. Int J Oncol. 2019;54(5):1625–1638. doi:10.3892/ijo.2019.4753
  • Xu W, Shi Q, Qian X. Rab5a suppresses autophagy to promote drug resistance in cancer cells. Am J Transl Res. 2018;10(4):1229–1236.
  • Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–141. doi:10.1038/ncb2152
  • Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25:1895–1908. doi:10.1101/gad.17420111
  • Kim TW, Lee SY, Kim M, et al. DSGOST regulates resistance via activation of autophagy in gastric cancer. Cell Death Dis. 2018;9(6):1–13. doi:10.1038/s41419-018-0658-y
  • Gurpinar E, Grizzle WE, Piazza GA. NSAIDs inhibit tumorigenesis, but how? Clin. Cancer Res. 2014;20:1104–1113.
  • Vallecillo-Hernández J, Barrachina MD, Ortiz-Masiá D, et al. Indomethacin disrupts autophagic flux by inducing lysosomal dysfunction in gastric cancer cells and increases their sensitivity to cytotoxic drugs. Sci Rep. 2018;8(1):1–10. doi:10.1038/s41598-018-21455-1
  • Chen J, Shao R, Li F, et al. PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells Clin Exp Pharmacol Physiol. 2015;42(12):1317–1326. doi:10.1111/1440-1681.12493
  • Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–5012. doi:10.1182/blood.V90.12.5002
  • Lu R, Zhao G, Yang Y, et al. Inhibition of CD133 overcomes cisplatin resistance through inhibiting PI3K/AKT/mTOR signaling pathway and autophagy in CD133-positive gastric cancer cells. Technol Cancer Res Treat. 2019;18:153303381986431. doi:10.1177/1533033819864311
  • Lim H, Son KH, Chang HW, Bae K, Kang SS, Kim HP. Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum. Biol Pharm Bull. 2008;31:2063–2067. doi:10.1248/bpb.31.2063
  • Zhang T, Li S, Li J, et al. Natural product pectolinarigenin inhibits osteosarcoma growth and metastasis via SHP-1-mediated STAT3 signaling inhibition. Cell Death Dis. 2016;7:e2421–e2421. doi:10.1038/cddis.2016.305
  • Lee HJ, Venkatarame Gowda Saralamma V, Kim SM, et al. Pectolinarigenin induced cell cycle arrest, autophagy, and apoptosis in gastric cancer cell via PI3K/AKT/mTOR signaling pathway. Nutrients. 2018;10(8):1043. doi:10.3390/nu10081043
  • Bajpai M, Pande A, Tewari SK, Prakash D. Phenolic contents and anti-oxidant activity of some food and medicinal plants. Int J Food Sci Nutr. 2005;56:287–291. doi:10.1080/09637480500146606
  • Kim TW, Lee SY, Kim M, et al. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis. 2018;9(9):1–14. doi:10.1038/s41419-018-0930-1
  • Zhang F, Ma C. Kaempferol suppresses human gastric cancer SNU-216 cell proliferation, promotes cell autophagy, but has no influence on cell apoptosis. Braz J Med Biol Res. 2019;52(2). doi:10.1590/1414-431x20187843
  • Kumar A, Sirohi VK, Anum F, et al. Enhanced apoptosis, survivin down-regulation and assisted immunochemotherapy by curcumin loaded amphiphilic mixed micelles for subjugating endometrial cancer. Nanomedicine. 2017;13(6):1953–1963. doi:10.1016/j.nano.2017.04.014
  • Pandey A, Vishnoi K, Mahata S, et al. Berberine and curcumin target survivin and STAT3 in gastric cancer cells and synergize actions of standard chemotherapeutic 5-Fluorouracil. Nutr Cancer. 2015;67(8):1293–1304. doi:10.1080/01635581.2015.1085581
  • Zou P, Xia Y, Chen T, et al. Selective killing of gastric cancer cells by a small molecule targeting ROS-mediated ER stress activation. Mol Carcinog. 2016;55(6):1073–1086. doi:10.1002/mc.22351
  • Yu LL, Wu JG, Dai N, et al. Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncol Rep. 2011;26(5):1197–1203. doi:10.3892/or.2011.1410
  • Bengmark S. Curcumin, an atoxic antioxidant and natural NF-κB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. J Parenter Enteral Nutr. 2006;30(1):45–51. doi:10.1177/014860710603000145
  • Fu H, Wang C, Yang D, et al. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J Cell Physiol. 2018;233(6):4634. doi:10.1002/jcp.26190
  • Li C, Wang MH. Potential biological activities of magnoflorine: a compound from Aristolochia debilis Sieb. et Zucc. Korean J Plant Resour. 2014;27:223–228. doi:10.7732/kjpr.2014.27.3.223
  • Zhao Z, Wang J, Tang J, et al. JNK-and Akt-mediated Puma expression in the apoptosis of cisplatin resistant ovarian cancer cells. Biochem J. 2012;444:291–301. doi:10.1042/BJ20111855
  • Sun XL, Zhang XW, Hj Z, et al. Magnoflorine inhibits human gastric cancer progression by inducing autophagy, apoptosis and cell cycle arrest by JNK activation regulated by ROS. Biomed Pharmacother. 2020;125:109118. doi:10.1016/j.biopha.2019.109118
  • Acuna-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cel Mol Life Sci. 2014;71(16):2997–3025.
  • Song J, Ma SJ, Luo JH, et al. Melatonin induces the apoptosis and inhibits the proliferation of human gastric cancer cells via blockade of the AKT/MDM2 pathway. Oncol Rep. 2018;39(4):1975–1983. doi:10.3892/or.2018.6282
  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–529. doi:10.1038/nrm2199
  • Ogata M, Hino SI, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26(24):9220–9231. doi:10.1128/MCB.01453-06
  • Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460–3470. doi:10.1016/j.bbamcr.2013.06.028
  • Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res. 2018;42(4):455–462. doi:10.1016/j.jgr.2017.05.003
  • Sun D, Lu M, Wang S, Fu L. Ginsenoside Rg3 inhibits gastric cancer cell proliferation through Ca2+/CaM kinase downregulation and NF-κB inactivation. Chin J Cancer Biother. 2015;22(2):225–229.
  • Mao Q, Zhang PH, Wang Q, Li SL. Ginsenoside F2 induces apoptosis in humor gastric carcinoma cells through reactive oxygen species-mitochondria pathway and modulation of ASK-1/JNK signaling cascade in vitro and in vivo. Phytomedicine. 2014;21(4):515–522. doi:10.1016/j.phymed.2013.10.013
  • Liu Y, Fan D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem Pharmacol. 2019;168:285–304. doi:10.1016/j.bcp.2019.07.008
  • Kakuyama A, Sadzuka Y. Effect of methylxanthine derivatives on doxorubicin transport and antitumor activity. Curr Drug Metab. 2001;2:379–395. doi:10.2174/1389200013338270
  • Liu H, Zhou Y, Tang L. Caffeine induces sustained apoptosis of human gastric cancer cells by activating the caspase9/caspase3 signalling pathway. Mol Med Rep. 2017;16:2445–2454. doi:10.3892/mmr.2017.6894
  • Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK. Autophagy and apoptosis: where do they meet? Apoptosis. 2014;19:555–566. doi:10.1007/s10495-014-0967-2
  • Liu W, Zhang B, Chen G, et al. Targeting miR-21 with sophocarpine inhibits tumor progression and reverses epithelial-mesenchymal transition in head and neck cancer. Mol Ther. 2017;25(9):2129–2139. doi:10.1016/j.ymthe.2017.05.008
  • Huang Y, Chen X, Guo G, et al. Sophocarpine inhibits the growth of gastric cancer cells via autophagy and apoptosis. Front Biosci. 2019;24:616–627.
  • Lim SC, Han SI. Ursodeoxycholic acid effectively kills drug-resistant gastric cancer cells through induction of autophagic death. Oncol Rep. 2015;34:1261–1268. doi:10.3892/or.2015.4076
  • Xu MY, Lee DH, Joo EJ, Son KH, Kim YS. Akebia saponin PA induces autophagic and apoptotic cell death in AGS human gastric cancer cells. Food Chem Toxicol. 2013;59:703–708. doi:10.1016/j.fct.2013.06.059